Endocannabinoid System

Wiley

“The endocannabinoid system (ECS) is defined as the signalling system composed of: (1) the two G‐protein‐coupled receptors known as cannabinoid receptors of type‐1 and ‐2 (CB1 and CB2); (2) the two most studied endogenous agonists of such receptors, the endocannabinoids anandamide (N‐arachidonoyl‐ethanolamine) and 2‐AG (2‐arachidonoyl‐glycerol); (3) enzymes and other proteins regulating the tissue levels of endocannabinoids; and (4) enzymes and other proteins that, together with endocannabinoids, regulate the activity of cannabinoid receptors.

A key role of the ECS is emerging in the control not only of central and peripheral nervous system functions, but also of most aspects of mammalian physiology, including energy intake, processing and storage, the immune response, reproduction and cell fate.

The ECS is also subject to dysregulation, and this seems to contribute to the symptoms and progress of several diseases. Hence, the possibility of developing new therapies starting from our increasing knowledge of the ECS is discussed.”

http://www.els.net/WileyCDA/ElsArticle/refId-a0023403.html

http://www.thctotalhealthcare.com/category/endocannabinoid-system/

Interaction of cannabinoid receptor 2 and social environment modulates chronic alcohol consumption.

“Genetic and environmental factors contribute nearly with equal power to the development of alcoholism. Environmental factors, like negative life events or emotionally disruptive conditions initiate and promote alcohol drinking and relapse.

The endocannabinoid system is involved in hedonic control and modulates stress reactivity. Furthermore, chronic alcohol drinking alters endocannabinoid signalling, which in turn influences the stress reactivity.

Recently it has been shown that CB2 receptor activity influences stress sensitivity and alcohol drinking. We hypothesised that CB2 receptors influence the impact of environmental risk factors on alcohol preference and consumption. Therefore, in this study we investigated the alcohol-drinking pattern of wild type and CB2 deficient animals under single and group housing conditions using different alcohol drinking models, like forced drinking, intermittent forced drinking and two-bottle choice paradigms.

Our data showed that CB2 receptor modulates alcohol consumption and reward.

Interestingly, we detected that lack of CB2 receptors led to increased alcohol drinking in the intermittent forced drinking paradigm under group housing conditions.

Furthermore, we found that CB2 knockout mice consumed more food and that their body weight gain was modulated by social environment.

On the base of these data, we conclude that social environment critically affects the modulatory function of CB2 receptors especially in alcohol intake.

These findings suggest that a treatment strategy targeting CB2 receptors may have a beneficial effect on pathologic drinking particularly in situations of social stress and discomfort.”

2-AG promotes the expression of conditioned fear via cannabinoid receptor type 1 on GABAergic neurons.

“The contribution of two major endocannabinoids, 2-arachidonoylglycerol (2-AG) and anandamide (AEA), in the regulation of fear expression is still unknown. We analyzed the role of different players of the endocannabinoid system on the expression of a strong auditory-cued fear memory in male mice by pharmacological means…

Our findings suggest that increased AEA levels mediate acute fear relief, whereas increased 2-AG levels promote the expression of conditioned fear primarily via CB1 on GABAergic neurons.”

http://www.ncbi.nlm.nih.gov/pubmed/25814137

http://www.thctotalhealthcare.com/category/post-traumatic-stress-disorder-ptsd/

Cannabinoids to treat spinal cord injury.

“Spinal Cord Injury (SCI) is a devastating condition for which there is no standard treatment beyond rehabilitation strategies. In this review, we discuss the current knowledge on the use of cannabinoids to treat this condition.

The endocannabinoid system is expressed in the intact spinal cord, and it is dramatically upregulated after lesion. Endogenous activation of this system counteracts secondary damage following SCI, and treatments with endocannabinoids or synthetic cannabinoid receptor agonists promote a better functional outcome in experimental models.

The use of cannabinoids in SCI is a new research field and many questions remain open. Here, we discuss caveats and suggest some future directions that may help to understand the role of cannabinoids in SCI and how to take advantage of this system to regain functions after spinal cord damage.”

http://www.ncbi.nlm.nih.gov/pubmed/25805333

http://www.thctotalhealthcare.com/category/spinal-cord-injury/

Inhibition of monoacylglycerol lipase mediates a cannabinoid 1-receptor dependent delay of kindling progression in mice.

“Endocannabinoids, including 2-arachidonoylglycerol (2-AG), activate presynaptic cannabinoid type 1 receptors (CB1R) on inhibitory and excitatory neurons, resulting in a decreased release of neurotransmitters.

Event-specific activation of the endocannabinoid system by inhibition of the endocannabinoid degrading enzymes may offer a promising strategy to selectively activate CB1Rs at the site of excessive neuronal activation with the overall goal to prevent the development epilepsy.

The aim of this study was to investigate the impact of monoacylglycerol lipase (MAGL) inhibition on the development and progression of epileptic seizures in the kindling model of temporal lobe epilepsy.

In conclusion, the data demonstrate that indirect CB1R agonism delays the development of generalized epileptic seizures, but has no relevant acute anticonvulsive effects.

Furthermore, we confirmed that the effects of JZL184 on kindling progression are CB1R mediated.

Thus, the data indicate that the endocannabinoid 2-AG might be a promising target for an anti-epileptogenic approach.”

Endocannabinoid signaling at the periphery: 50 years after THC.

“In 1964, the psychoactive ingredient of Cannabis sativa, Δ9-tetrahydrocannabinol (THC), was isolated. Nearly 30 years later the endogenous counterparts of THC, collectively termed endocannabinoids (eCBs), were discovered: N-arachidonoylethanolamine (anandamide) (AEA) in 1992 and 2-arachidonoylglycerol (2-AG) in 1995.

Since then, considerable research has shed light on the impact of eCBs on human health and disease, identifying an ensemble of proteins that bind, synthesize, and degrade them and that together form the eCB system (ECS). eCBs control basic biological processes including cell choice between survival and death and progenitor/stem cell proliferation and differentiation.

Unsurprisingly, in the past two decades eCBs have been recognized as key mediators of several aspects of human pathophysiology and thus have emerged to be among the most widespread and versatile signaling molecules ever discovered.

Here some of the pioneers of this research field review the state of the art of critical eCB functions in peripheral organs. Our community effort is aimed at establishing consensus views on the relevance of the peripheral ECS for human health and disease pathogenesis, as well as highlighting emerging challenges and therapeutic hopes.”

http://www.ncbi.nlm.nih.gov/pubmed/25796370

For whom the endocannabinoid tolls: Modulation of innate immune function and implications for psychiatric disorders.

“Over the past decade, there has been increasing evidence demonstrating that the endocannabinoid system can elicit potent modulatory effects on inflammatory processes, with clinical and preclinical evidence demonstrating beneficial effects on disease severity and symptoms in several inflammatory conditions.

This review examines the evidence supporting a modulatory effect of endocannabinoids on TLR-mediated immune responses both peripherally and centrally, and the implications for psychiatric disorders such as depression and schizophrenia.

CLASSES OF CANNABINOID-BASED PHARMACOLOGICAL AGENTS CITED IN THE REVIEW: Nonselective CB1/CB2 agonists: Δ9-THC, HU210, CP55940, WIN55,212-2 Selective CB2 agonists: JWH-015 FAAH inhibitors: URB597, AA-5HT MAGL/ABHD6 inhibitors: JZL184, MJN110, KML129, WWL70 Endocannabinoid reuptake inhibitors: UCM707, OMDM1/2, AM404.”

http://www.ncbi.nlm.nih.gov/pubmed/25794989

The potential of inhibitors of endocannabinoid metabolism as anxiolytic and antidepressive drugs-A practical view.

“The endocannabinoid system, comprising cannabinoid CB1 and CB2 receptors, their endogenous ligands anandamide and 2-arachidonoylglyerol, and their synthetic and metabolic enzymes, are involved in many biological processes in the body, ranging from appetite to bone turnover.

Compounds inhibiting the breakdown of anandamide and 2-arachidonoylglycerol increase brain levels of these lipids and thus modulate endocannabinoid signalling.

In the present review, the preclinical evidence that these enzymes are good targets for development of novel therapies for anxiety and depression are discussed from a practical, rather than mechanistic, point of view.

It is concluded that the preclinical data are promising, albeit tempered by problems of tolerance as well as effects upon learning and memory for irreversible monoacylglycerol lipase inhibitors, and limited by a focus upon male rodents alone.

Clinical data so far has been restricted to safety studies with inhibitors of anandamide hydrolysis and a hitherto unpublished study on such a compound in elderly patients with major depressive disorders, but under the dose regimes used, they are well tolerated and show no signs of “cannabis-like” behaviours.”

http://www.ncbi.nlm.nih.gov/pubmed/25791296

Cannabis in cancer care.

“Cannabis has been used in medicine for thousands of years prior to achieving its current illicit substance status.

Cannabinoids, the active components of Cannabis sativa, mimic the effects of the endogenous cannabinoids (endocannabinoids), activating specific cannabinoid receptors, particularly CB1 found predominantly in the central nervous system and CB2 found predominantly in cells involved with immune function.

Delta-9-tetrahydrocannabinol, the main bioactive cannabinoid in the plant, has been available as a prescription medication approved for treatment of cancer chemotherapy-induced nausea and vomiting and anorexia associated with the AIDS wasting syndrome.

Cannabinoids may be of benefit in the treatment of cancer-related pain, possibly synergistic with opioid analgesics.

Cannabinoids have been shown to be of benefit in the treatment of HIV-related peripheral neuropathy, suggesting that they may be worthy of study in patients with other neuropathic symptoms.

Cannabinoids have a favorable drug safety profile, but their medical use is predominantly limited by their psychoactive effects and their limited bioavailability.”

http://www.ncbi.nlm.nih.gov/pubmed/25777363

http://www.thctotalhealthcare.com/category/cancer/

Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs.

“Status epilepticus (SE) is a medical emergency associated with a high rate of mortality if not treated promptly.

Exogenous and endogenous cannabinoids have been shown to possess anticonvulsant properties both in vivo and in vitro.

Here we study the influence of endocannabinoid metabolism on the development of kainic acid-induced SE in guinea pigs.

The present study provides electrophysiologic and behavioral evidences that inhibition of endocannabinoid metabolism plays a protective role against kainic acid-induced SE and may be employed for therapeutic purposes.”

http://www.ncbi.nlm.nih.gov/pubmed/25769371

http://www.thctotalhealthcare.com/category/epilepsy-2/