The Role of Endocannabinoid Signaling in the Molecular Mechanisms of Neurodegeneration in Alzheimer’s Disease.

“Alzheimer’s disease (AD) is the most common form of progressive neurodegenerative disease characterized by cognitive impairment and mental disorders… AD is multifaceted in nature and is linked to different multiple mechanisms in the brain…

The ideal treatment for AD should be able to modulate the disease through multiple mechanisms rather than targeting a single dysregulated pathway.

Recently, the endocannabinoid system emerged as novel potential therapeutic target to treat AD.

In fact, exogenous and endogenous cannabinoids seem to be able to modulate multiple processes in AD, although the mechanisms that are involved are not fully elucidated.

This review provides an update of this area. In this review, we recapitulate the role of endocannabinoid signaling in AD and the probable mechanisms through which modulators of the endocannabinoid system provide their effects, thus highlighting how this target might provide more advantages over other therapeutic targets.”

http://www.ncbi.nlm.nih.gov/pubmed/25147120

http://www.thctotalhealthcare.com/category/alzheimers-disease-ad/

Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes via cannabinoid receptor-2-mediated signaling.

Figure 1.

“To further investigate the role of the cannabinoid system in pilosebaceous unit biology, we have explored in the current study whether and how endocannabinoids have an impact on human sebaceous gland biology…

Here, we provide the first evidence that SZ95 sebocytes express CB2 but not CB1…

…our results collectively suggest that human sebocytes utilize a paracrine-autocrine, endogenously active, CB2-mediated endocannabinoid signaling system for positively regulating lipid production and cell death.

CB2 antagonists or agonists therefore deserve to be explored in the management of skin disorders characterized by sebaceous gland dysfunctions (e.g., acne vulgaris, seborrhea, dry skin).”

http://www.fasebj.org/content/22/10/3685.long

Endocannabinoid signaling and epidermal differentiation.

“Endocannabinoids represent a class of endogenous lipid mediators, that are involved in various biological processes, both centrally and peripherally. The prototype member of this group of compounds, anandamide, regulates cell growth, differentiation and death; this holds true also in the skin, that is the largest organ of the body constantly exposed to physical, chemical, bacterial and fungal challenges.

The epidermis is a keratinized multistratified epithelium that functions as a barrier to protect the organism from dehydration, mechanical trauma, and microbial insults, and epidermal differentiation represents one of the best characterized mechanisms of cell specialization.

In this review, we shall summarize current knowledge about the main members of the so-called “endocannabinoid system (ECS)”, in order to put in a better perspective the manifold roles that they play in skin pathophysiology.

In particular, we shall discuss some aspects of the molecular regulation by endocannabinoids of proliferation and terminal differentiation (“cornification”) of mammalian epidermis, showing that ECS is finely regulated by, and can interfere with, the differentiation program.

In addition, we shall review evidence demonstrating that disruption of this fine regulation might cause different skin diseases, such as acne, seborrhoea, allergic dermatitis, itch, psoriasis and hair follicle regression (catagen), making of ECS an attractive target for therapeutic intervention.”

http://www.ncbi.nlm.nih.gov/pubmed/21628127

[A role for the endocannabinoid system in hepatic steatosis].

“The endocannabinoid system (SEC) is an important modulator of several metabolic functions.

This system is composed by cannabinoid receptors type 1 and 2 (RCB1 and RCB2), their endogenous ligands, known as endocannabinoids, and the enzymes involved in their synthesis and degradation. A deregulated SEC originates metabolic alterations in several tissues, resulting in the typical manifestations of the metabolic syndrome…

In this review we discuss the proposed mechanisms by which SEC is involved in the etiology of hepatic steatosis, as well as the therapeutic possibilities involving peripheral RCB1/RCB2 antagonism/agonism, for the treatment of this condition.”

http://www.ncbi.nlm.nih.gov/pubmed/25052273

http://www.thctotalhealthcare.com/category/hepatic-steatosis/

Endocannabinoid CB1 antagonists inhibit hepatitis C virus production, providing a novel class of antiviral host targeting agents.

“Direct acting antivirals have significantly improved treatment outcomes in chronic hepatitis C (CHC), but side effects, drug resistance and cost mean that better treatments are still needed.

Lipid metabolism is closely linked with hepatitis C virus (HCV) replication and endocannabinoids are major regulators of lipid homeostasis.

The cannabinoid 1 (CB1) receptor mediates these effects in the liver.

Here we investigated whether CB1 blockade inhibits HCV replication.

The antiviral effect of a CB1 antagonist, AM251 was examined…

Treatment with AM251 strongly inhibited HCV RNA (~70%), viral protein (~80%), the production of new virus particles (~70%), and virus infectivity (~90%)…

We suggest that CB1 antagonists may represent an entirely new class of drugs with activity against HCV.

Mechanisms of control of neuron survival by the endocannabinoid system.

“Endocannabinoids act as retrograde messengers that, by inhibiting neurotransmitter release via presynaptic CB(1) cannabinoid receptors, regulate the functionality of many synapses. In addition, the endocannabinoid system participates in the control of neuron survival.

Thus, CB(1) receptor activation has been shown to protect neurons from acute brain injury as well as in neuroinflammatory conditions and neurodegenerative diseases.

Cannabinoid neuroprotective activity relies on the inhibition of glutamatergic neurotransmission and on other various mechanisms, and is supported by the observation that the brain overproduces endocannabinoids upon damage.

Besides promoting neuroprotection, a role for the endocannabinoid system in the control of neurogenesis from neural progenitors has been put forward. In addition, activation of CB(2) cannabinoid receptors on glial cells may also participate in neuroprotection by limiting the extent of neuroinflammation.

Altogether, these findings support that endocannabinoids constitute a new family of lipid mediators that act as instructive signals in the control of neuron survival.”

http://www.ncbi.nlm.nih.gov/pubmed/18781978

Defective Adult Neurogenesis in CB1 Cannabinoid Receptor Knockout Mice

  Fig. 1.

“…endogenous cannabinoid signaling mechanisms may represent a key component of cell-survival programs mobilized in the injured brain.

In addition to their neuroprotective effects, cannabinergic systems may also have an important role in brain development…

…expression of endocannabinoids and cannabinoid receptors in brain…

Neurogenesis, or the birth of new neurons, continues to occur beyond development and into adulthood, and several lines of evidence suggest that cannabinoid signaling may be involved in this process as well…

In addition to the well known effects of growth factors, a variety of drugs has been shown to influence adult neurogenesis. These include excitatory amino acid receptor antagonists, antidepressants, lithium, nitric oxide donors, phosphodiesterase inhibitors, and statins.

Together with the finding that neurogenesis can be regulated by cannabinoids, these observations imply that a broad range of pharmacological approaches may exist through which to modify neurogenesis for therapeutic purposes.”

http://molpharm.aspetjournals.org/content/66/2/204.full

Ligand Activation of Cannabinoid Receptors Attenuates Hypertrophy of Neonatal Rat Cardiomyocytes.

“Endocannabinoids are bioactive amides, esters and ethers of long chain polyunsaturated fatty acids. Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries.

…may represent a novel therapeutic approach to cardioprotection.”

http://www.ncbi.nlm.nih.gov/pubmed/24979612

Cannabinoids Can Limit Neurological Stroke Damage

“Chemical compounds found in cannabis may help to reduce brain damage following a stroke, new research has revealed.
Researchers at the University of Nottingham conducted a meta-analysis of experimental studies into cannabinoids; chemicals related to those found in cannabis, some of which also occur naturally in the body. The findings showed that the compounds could reduce the size of stroke and improve neurological function.
Cannabinoids can be classified into those found naturally in the body (endocannabinoids), those made artificially (synthetic cannabinoids) or those derived from extracts from the plant cannabis sativa (phytocannabinoids).
The research, announced at the annual UK Stroke Forum, indicates that all three classes of cannabinoid could be effective in shrinking the area of the brain affected by stroke and in recovering neurological function.”

Compounds in cannabis could limit stroke damage

A cannabis plant

“Chemical compounds found in cannabis may help to reduce brain damage following a stroke, new research has revealed.

 Researchers at the University of Nottingham conducted a meta-analysis of experimental studies into cannabinoids; chemicals related to those found in cannabis, some of which also occur naturally in the body. The findings showed that the compounds could reduce the size of stroke and improve neurological function.
Cannabinoids can be classified into those found naturally in the body (endocannabinoids), those made artificially (synthetic cannabinoids) or those derived from extracts from the plant cannabis sativa (phytocannabinoids).”