Cannabinoid Receptor Type 1 and Its Role as an Analgesic: An Opioid Alternative?

 Publication Cover“Understanding how the body regulates pain is fundamental to develop rational strategies to combat the growing prevalence of chronic pain states, opioid dependency, and the increased financial burden to the medical care system.

Pain is the most prominent reason why Americans seek medical attention and extensive literature has identified the importance of the endocannabinoid pathway in controlling pain. Modulation of the endocannabinoid system offers new therapeutic opportunities for the selective control of excessive neuronal activity in several pain conditions (acute, inflammatory, chronic, and neuropathic).

Cannabinoids have a long history of medicinal use and their analgesic properties are well documented; however, there are major impediments to understanding cannabinoid pain modulation.

One major issue is the presence of psychotropic side effects associated with D9-tetrahydrocannabinol (THC) or synthetic derivatives, which puts an emphatic brake on their use. This dose-limiting effect prevents the appropriate degree of analgesia .

Animal studies have shown that the psychotropic effects are mediated via brain cannabinoid type 1 (CB1) receptors, while analgesic activity in chronic pain states may be mediated via CB1R action in the spinal cord, brainstem, peripheral sensory neurons, or immune cells.

The development of appropriate therapies is incumbent on our understanding of the role of peripheral versus central endocannabinoid-driven analgesia. Recent physiological, pharmacological, and anatomical studies provide evidence that one of the main roles of the endocannabinoid system is the regulation of gamma-aminobutyric acid (GABA) and/or glutamate release.

This article will review this evidence in the context of its implications for pain. We first provide a brief overview of CB1R’s role in the regulation of nociception, followed by a review of the evidence that the peripheral endocannabinoid system modulates nociception.

We then look in detail at regulation of central-mediated analgesia, followed up with evidence that cannabinoid mediated modulation of pain involves modulation of GABAergic and glutamatergic neurotransmission in key brain regions. Finally, we discuss cannabinoid action on non-neuronal cells in the context of inflammation and direct modulation of neurons.

This work stands to reveal long-standing controversies in the cannabinoid analgesia area that have had an impact on failed clinical trials and implementation of therapeutics targeting this system.”

https://www.ncbi.nlm.nih.gov/pubmed/31596190

https://www.tandfonline.com/doi/abs/10.1080/15504263.2019.1668100?journalCode=wjdd20

Human leukocytes differentially express endocannabinoid-glycerol lipases and hydrolyze 2-arachidonoyl-glycerol and its metabolites from the 15-lipoxygenase and cyclooxygenase pathways.

Publication cover image“2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties.

Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes.

Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), α/β-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs).

Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.”

https://www.ncbi.nlm.nih.gov/pubmed/31556464

https://jlb.onlinelibrary.wiley.com/doi/abs/10.1002/JLB.3A0919-049RRR

Altered mRNA Expression of Genes Involved in Endocannabinoid Signalling in Squamous Cell Carcinoma of the Oral Tongue.

Publication Cover “Little is known about the endocannabinoid (eCB) system in squamous cell carcinoma of the oral tongue (SCCOT). Here we have investigated, at the mRNA level, expression of genes coding for the components of the eCB system in tumour and non-malignant samples from SCCOT patients. Expression of NAPEPLD and PLA2G4E, coding for eCB anabolic enzymes, was higher in the tumour tissue than in non-malignant tissue. Among genes coding for eCB catabolic enzymes, expression of MGLL was lower in tumour tissue while PTGS2 was increased. It is concluded that the eCB system may be dysfunctional in SCCOT.”

https://www.ncbi.nlm.nih.gov/pubmed/31423851

“There is good evidence that the eCB system is disrupted in cancer. The present study represents an initial investigation into the eCB system in SCCOT. In conclusion, the present study has shown that at the mRNA level, the eCB system is disturbed in SCCOT compared to non-malignant tongue tissue.”

Endocannabinoid system and the expression of endogenous ceramides in human hepatocellular carcinoma.

 Journal Cover“The endogenous lipid metabolism network is associated with the occurrence and progression of malignancies.

Endocannabinoids and ceramides have demonstrated their anti-proliferative and pro-apoptotic properties in a series of cancer studies.

The aim of the present study was to evaluate the expression patterns of endocannabinoids and endogenous ceramides in 67 pairs of human hepatocellular carcinoma (HCC) tissues and non-cancerous counterpart controls.

Anandamide (AEA), the major endocannabinoid, was reduced in tumor tissues, probably due to the high expression and activity of fatty acid amide hydrolase. Another important endocannabinoid, 2-arachidonylglycerol (2-AG), was elevated in tumor tissues compared with non-tumor controls, indicating that the biosynthesis of 2-AG is faster than the degradation of 2-AG in tumor cells.

Furthermore, western blot analysis demonstrated that cannabinoid receptor 1 was downregulated, while cannabinoid receptor 2 was elevated in HCC tissues, in accordance with the alterations in the levels of AEA and 2-AG, respectively. For HCC tissues, the expression levels of C18:0, 20:0 and 24:0-ceramides decreased significantly, whereas C12:0, 16:0, 18:1 and 24:1-ceramides were upregulated, which may be associated with cannabinoid receptor activation and stearoyl-CoA desaturase protein downregulation.

The exact role of endocannabinoids and ceramides in regulating the fate of HCC cells requires further investigation.”

https://www.ncbi.nlm.nih.gov/pubmed/31423220

https://www.spandidos-publications.com/10.3892/ol.2019.10399

Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids.

Image result for Psychological Medicine “Evidence has been accumulating regarding alterations in components of the endocannabinoid system in patients with psychosis.

Of all the putative risk factors associated with psychosis, being at clinical high-risk for psychosis (CHR) has the strongest association with the onset of psychosis, and exposure to childhood trauma has been linked to an increased risk of development of psychotic disorder.

We aimed to investigate whether being at-risk for psychosis and exposure to childhood trauma were associated with altered endocannabinoid levels.

RESULTS:

Individuals with both CHR and experience of childhood trauma had higher N-palmitoylethanolamine (p < 0.001) and anandamide (p < 0.001) levels in peripheral blood compared to healthy controls (HC) and those with no childhood trauma. There was also a significant correlation between N-palmitoylethanolamine levels and symptoms as well as childhood trauma.

CONCLUSIONS:

Our results suggest an association between CHR and/or childhood maltreatment and elevated endocannabinoid levels in peripheral blood, with a greater alteration in those with both CHR status and history of childhood maltreatment compared to those with either of those risks alone. Furthermore, endocannabinoid levels increased linearly with the number of risk factors and elevated endocannabinoid levels correlated with the severity of CHR symptoms and extent of childhood maltreatment. Further studies in larger cohorts, employing longitudinal designs are needed to confirm these findings and delineate the precise role of endocannabinoid alterations in the pathophysiology of psychosis.”

https://www.ncbi.nlm.nih.gov/pubmed/31422779

https://www.cambridge.org/core/journals/psychological-medicine/article/childhood-trauma-and-being-atrisk-for-psychosis-are-associated-with-higher-peripheral-endocannabinoids/BFFDA252EF2250C2F2B45786CC152CDC

N-Eicosapentaenoyl Dopamine, A Conjugate of Dopamine and Eicosapentaenoic Acid (EPA), Exerts Anti-inflammatory Properties in Mouse and Human Macrophages.

nutrients-logo“A large body of evidence suggests that dietary n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), contribute to a reduced inflammatory tone thereby lowering the risk for several chronic and degenerative diseases. Different mechanisms have been proposed to explain these anti-inflammatory effects, including those involving endocannabinoids and endocannabinoid-like molecules.

In this context, fatty acid amides (FAAs), conjugates of fatty acids with amines or amino acids, are an emerging class of compounds. Dopamine conjugates of DHA (N-docosahexaenoyl dopamine, DHDA) and EPA (N-eicosapentaenoyl dopamine, EPDA) have previously been shown to induce autophagy, apoptosis, and cell death in different tumor lines. Additionally, DHDA has displayed anti-inflammatory properties in vitro.

Here, we tested the immune-modulatory properties of EPDA in mouse RAW 264.7 and human THP-1 macrophages stimulated with lipopolysaccharide (LPS). EPDA suppressed the production of monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in both cell lines, and nitric oxide (NO), and macrophage-inflammatory protein-3α (MIP3A) in RAW 264.7 macrophages. At a transcriptional level, EPDA attenuated cyclooxygenase-2 (COX-2) expression in both cell lines and that of MCP-1, IL-6, and interleukin-1β (IL-1β) in THP-1 macrophages.

Although further research is needed to reveal whether EPDA is an endogenous metabolite, our data suggest that this EPA-derived conjugate possesses interesting immune-modulating properties.”

Stress and Western diets increase vulnerability to neuropsychiatric disorders: A common mechanism.

Publication Cover“In modern lifestyle, stress and Western diets are two major environmental risk factors involved in the etiology of neuropsychiatric disorders. Lifelong interactions between stress, Western diets, and how they can affect brain physiology, remain unknown.

A possible relation between dietary long chain polyunsaturated fatty acids (PUFA), endocannabinoids, and stress is proposed.

This review suggests that both Western diets and negative stress or distress increase n-6/n-3 PUFA ratio in the phospholipids of the plasma membrane in neurons, allowing an over-activation of the endocannabinoid system in the limbic areas that control emotions. As a consequence, an excitatory/inhibitory imbalance is induced, which may affect the ability to synchronize brain areas involved in the control of stress responses. These alterations increase vulnerability to neuropsychiatric disorders.

Accordingly, dietary intake of n-3 PUFA would counter the effects of stress on the brain of stressed subjects. In conclusion, this article proposes that PUFA, endocannabinoids, and stress form a unique system which is self-regulated in limbic areas which in turn controls the effects of stress on the brain throughout a lifetime.”

Novel Anti-inflammatory and Vasodilatory ω-3 Endocannabinoid Epoxide Regioisomers.

 “Accumulating evidence suggests that diets rich in ω-3 polyunsaturated fatty acids (PUFAs) offer protection against vascular inflammation, neuroinflammation, hypertension, and thrombosis.

Recently, biochemical studies have demonstrated that these benefits are partially mediated by their conversion to ω-3 endocannabinoid epoxide metabolites. These lipid metabolites originate from the epoxidation of ω-3 endocannabinoids, docosahexanoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA) by cytochrome P450 (CYP) epoxygenases to form epoxydocosapentaenoic acid-ethanolamides (EDP-EAs) and epoxyeicosatetraenoic acid-ethanolamides (EEQ-EAs), respectively.

The EDP-EAs and EEQ-EAs are endogenously produced in rat brain and peripheral organs. Additionally, EDP-EAs and EEQ-EAs dose-dependently decrease pro-inflammatory IL-6 cytokine and increased anti-inflammatory IL-10 cytokine. Furthermore, the EEQ-EAs and EDP-EAs attenuate angiogenesis and cell migration in cancer cells, induce vasodilation in bovine coronary arteries, and reciprocally regulate platelet aggregation in washed human platelets.

Taken together, the ω-3 endocannabinoid epoxides represent a new class of dual acting molecules that display unique pharmacological properties.”

https://www.ncbi.nlm.nih.gov/pubmed/31562632

https://link.springer.com/chapter/10.1007%2F978-3-030-21735-8_17

Comparative studies of endocannabinoid modulation of pain.

Philosophical Transactions of the Royal Society B: Biological Sciences cover image

“Cannabinoid-based therapies have long been used to treat pain, but there remain questions about their actual mechanisms and efficacy. From an evolutionary perspective, the cannabinoid system would appear to be highly conserved given that the most prevalent endogenous cannabinoid (endocannabinoid) transmitters, 2-arachidonyl glycerol and anandamide, have been found throughout the animal kingdom, at least in the species that have been analysed to date. This review will first examine recent findings regarding the potential conservation across invertebrates and chordates of the enzymes responsible for endocannabinoid synthesis and degradation and the receptors that these transmitters act on. Next, comparisons of how endocannabinoids modulate nociception will be examined for commonalities between vertebrates and invertebrates, with a focus on the medicinal leech Hirudo verbana. Evidence is presented that there are distinct, evolutionarily conserved anti-nociceptive and pro-nociceptive effects. The combined studies across various animal phyla demonstrate the utility of using comparative approaches to understand conserved mechanisms for modulating nociception. This article is part of the Theo Murphy meeting issue ‘Evolution of mechanisms and behaviour important for pain’.”

https://www.ncbi.nlm.nih.gov/pubmed/31544609

https://royalsocietypublishing.org/doi/10.1098/rstb.2019.0279

The Endocannabinoid System of Animals.

 animals-logo“The endocannabinoid system has been found to be pervasive in mammalian species. It has also been described in invertebrate species as primitive as the Hydra. Insects, apparently, are devoid of this, otherwise, ubiquitous system that provides homeostatic balance to the nervous and immune systems, as well as many other organ systems.

The endocannabinoid system (ECS) has been defined to consist of three parts, which include (1) endogenous ligands, (2) G-protein coupled receptors (GPCRs), and (3) enzymes to degrade and recycle the ligands. Two endogenous molecules have been identified as ligands in the ECS to date.

The endocannabinoids are anandamide (arachidonoyl ethanolamide) and 2-AG (2-arachidonoyl glycerol). Two G-coupled protein receptors (GPCR) have been described as part of this system, with other putative GPC being considered.

Coincidentally, the phytochemicals produced in large quantities by the Cannabis sativa L plant, and in lesser amounts by other plants, can interact with this system as ligands. These plant-based cannabinoids are termed phytocannabinoids.

The precise determination of the distribution of cannabinoid receptors in animal species is an ongoing project, with the canine cannabinoid receptor distribution currently receiving the most interest in non-human animals.”

https://www.ncbi.nlm.nih.gov/pubmed/31527410

https://www.mdpi.com/2076-2615/9/9/686