Endocannabinoids in neuroimmunology and stress.

Abstract

“Two topics are presented in this review. In the first section, we review data regarding the effects of the endocannabinoids (eCBs) and cannabinoid receptors on neuroimmune function. The function of eCBs in the interaction between the immune system and the central nervous system (CNS) is of particular interest, since the CNS itself is a rich source of eCBs while being exquisitely sensitive to inflammation. There are several sites at which cannabinoids can influence neuroinflammation. Microglial cells express both CB receptors and make eCBs. Activation of CB receptors on these cells seems to promote migration and proliferation but to reduce activation to macrophages. In several neurodegenerative diseases, up-regulation of microglial CB2 receptors have been observed. It is our hypothesis that microglial CB receptor activity is anti-inflammatory and could be exploited to manipulate neuroinflammatory processes with a minimum of unwanted effects. The second topic discussed suggests that the eCB/CB1 receptor pair is involved in the responses of animals to acute, repeated and variable stress. The roles of this pair are complex and dependent upon previous stress, among other things. Dysfunctional responding to stress is a component of several human neuropsychiatric disorders, including anxiety and panic disorders, post-traumatic stress disorders, premenstrual dysphoria and quite possibly, drug abuse. While it is too early to say with certainty, it is very possible that either inhibition or potentiation of endocannabinoid signaling will be an efficacious novel therapeutic approach to more than one human psychiatric disease.”

http://www.ncbi.nlm.nih.gov/pubmed/16375683

Nonpsychotropic Cannabinoid Receptors Regulate Microglial Cell Migration

“During neuroinflammation, activated microglial cells migrate toward dying neurons, where they exacerbate local cell damage. The signaling molecules that trigger microglial cell migration are poorly understood. In this paper, we show that pathological overstimulation of neurons by glutamate plus carbachol dramatically increases the production of the endocannabinoid 2-arachidonylglycerol (2-AG) but only slightly increases the production of anandamide and does not affect the production of two putative endocannabinoids, homo-γ-linolenylethanolamide and docosatetraenylethanolamide. We further show that pathological stimulation of microglial cells with ATP also increases the production of 2-AG without affecting the amount of other endocannabinoids. Using a Boyden chamber assay, we provide evidence that 2-AG triggers microglial cell migration. This effect of 2-AG occurs through CB2 and abnormal-cannabidiol-sensitive receptors, with subsequent activation of the extracellular signal-regulated kinase 1/2 signal transduction pathway. It is important to note that cannabinol and cannabidiol, two nonpsychotropic ingredients present in the marijuana plant, prevent the 2-AG-induced cell migration by antagonizing the CB2 and abnormal-cannabidiol-sensitive receptors, respectively. Finally, we show that microglial cells express CB2 receptors at the leading edge of lamellipodia, which is consistent with the involvement of microglial cells in cell migration. Our study identifies a cannabinoid signaling system regulating microglial cell migration. Because this signaling system is likely to be involved in recruiting microglial cells toward dying neurons, we propose that cannabinol and cannabidiol are promising nonpsychotropic therapeutics to prevent the recruitment of these cells at neuroinflammatory lesion sites.”

“Because marijuana produces remarkable beneficial effects, patients with multiple sclerosis, for example, commonly use this plant as a therapeutic agent; however, we still lack essential information on the mechanistic basis of these beneficial effects.”

“The marijuana plant, Cannabis sativa, contains >60 cannabinoid compounds, the best known being Δ9-tetrahydrocannabinol (THC), cannabinol (CBN), and cannabidiol (CBD) (for review, see. Cannabinoid compounds produce their biological effects by acting through at least three cannabinoid receptors (see Table1). These include the cloned cannabinoid CB1 receptors, which are expressed predominately in the CNS, the cloned cannabinoid CB2 receptors, which are expressed predominately by immune cells, and the abnormal-cannabidiol-sensitive receptors (hereafter referred to as abn-CBD receptors). The latter receptors have not been cloned yet, but they have been pinpointed pharmacologically in mice lacking CB1 and CB2 receptors and are also known as anandamide (AEA) receptors.”

“We also show that CBN and CBD, two nonpsychotropic bioactive compounds of marijuana, may antagonize the 2-AG-induced recruitment of microglial cells. This is in agreement with the fact that nabilone, a synthetic analog of THC, produces minimal palliative effects against multiple sclerosis symptoms, whereas smoking cannabis is reported to be beneficial. Therefore, our results suggest that bioactive cannabinoids present in the marijuana plant, such as CBN and CBD, are likely to underlie the increased efficacy of cannabis versus nabilone and therefore hold promise as nonpsychotropic therapeutics to treat neuroinflammation.”

http://www.jneurosci.org/content/23/4/1398.long

Cannabinoids and neuroinflammation

Abstract

“Growing evidence suggests that a major physiological function of the cannabinoid signaling system is to modulate neuroinflammation. This review discusses the anti-inflammatory properties of cannabinoid compounds at molecular, cellular and whole animal levels, first by examining the evidence for anti-inflammatory effects of cannabinoids obtained using in vivo animal models of clinical neuroinflammatory conditions, specifically rodent models of multiple sclerosis, and second by describing the endogenous cannabinoid (endocannabinoid) system components in immune cells. Our aim is to identify immune functions modulated by cannabinoids that could account for their anti-inflammatory effects in these animal models.”

Conclusion

“Cells involved in neuroinflammation express functional cannabinoid receptors and produce and degrade endocannabinoids, suggesting that the endocannabinoid signaling system has a regulatory function in the inflammatory response. Specifically, during neuroinflammation, there is an upregulation of components involved in the cannabinoid signaling system. This suggests that the cannabinoid signaling system participates in the complex development of this disease, which includes a tight orchestration of the various immune cells involved. If this is the case, the cannabinoid signaling machinery may provide ideal targets, since these would be more susceptible to pharmacological effects than those in the same system under healthy conditions. In line with this, cannabinoid compounds alter the functions of these cells, generally by eliciting anti-inflammatory effects. In the case of MS, neuroinflammation is accompanied by autoimmunity and suppressing the immune response may halt or even prevent associated symptoms. As seen in rodent models of MS, cannabinoids ameliorate the progression of and symptoms associated with neuroinflammation. Future experiments into the components that alter endocannabinoid production and degradation, cannabinoid receptor expression, and effects of cannabinoid receptor agonists on immune cells will provide the necessary information to design more effective treatments for neuroinflammation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574256/

The endocannabinoid system in normal and pathological brain ageing.

Abstract

“The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.”

http://www.ncbi.nlm.nih.gov/pubmed/23108550

Cannabinoid receptors and endocannabinoids: role in neuroinflammatory and neurodegenerative disorders.

Abstract

“The G-protein coupled receptors for Δ⁹-tetrahydrocannabinol, the major psychoactive principle of marijuana, are known as cannabinoid receptors of type 1 (CB₁) and 2 (CB₂) and play important functions in degenerative and inflammatory disorders of the central nervous system. Whilst CB₁ receptors are mostly expressed in neurons, where they regulate neurotransmitter release and synaptic strength, CB₂ receptors are found mostly in glial cells and microglia, which become activated and over-express these receptors during disorders such as Alzheimer’s disease, multiple sclerosis, amyotropic lateral sclerosis, Parkinson’s disease, and Huntington’s chorea. The neuromodulatory actions at CB₁ receptors by endogenous agonists (‘endocannabinoids’), of which anandamide and 2-arachidonoylglycerol are the two most studied representatives, allows them to counteract the neurochemical unbalances arising during these disorders. In contrast, the immunomodulatory effects of these lipophilic mediators at CB₂ receptors regulate the activity and function of glia and microglia. Indeed, the level of expression of CB₁ and CB₂ receptors or of enzymes controlling endocannabinoid levels, and hence the concentrations of endocannabinoids, undergo time- and brain region-specific changes during neurodegenerative and neuroinflammatory disorders, with the initial attempt to counteract excitotoxicity and inflammation. Here we discuss this plasticity of the endocannabinoid system during the aforementioned central nervous system disorders, as well as its dysregulation, both of which have opened the way to the use of either direct and indirect activators or blockers of CB₁ and CB₂ receptors for the treatment of the symptoms or progression of these diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/20632970

Inflammation and aging: can endocannabinoids help?

“Aging often leads to cognitive decline due to neurodegenerative process in the brain. As people live longer, a growing concern exist linked to long-term, slowly debilitating diseases that have not yet found a cure, such as Alzheimer’s disease. Recently, the role of neuroinflammation has attracted attention due to its slow onset, chronic nature and its possible role in the development of many different neurodegenerative diseases. In the future, treatment of chronic neuroinflammation may help counteract aspects of neurodegenerative disease. Our recent studies have focused upon the endocannabinoid system for its unique effects on the expression of neuroinflammation. The basis for the manipulation of the endocannabinoid system in the brain in combination with existing treatments for Alzheimer’s disease will be discussed in this review.”

“Endocannabinoids

Cannabinoid refers to naturally occurring or synthetic molecules mimicking the activity of plant-derived cannabinoids from Cannabis Sativa. Two types of cannabinoid receptors have been so far identified in the body, named CB1 and CB2. Discovery of cannabinoid receptors (CBr) lead to the finding of endogenous agonists for these receptors called endocannabinoids (EC). EC are derived from arachidonic acid, arachidonoylethanolamide (anandamide), and 2-arachidonoyl glycerol (2-AG), synthesized on-demand post-synaptically and released in response to the entry of calcium ions. These EC in combination with the two known CBr constitute the endocannabinoid system (ECS). In the central nervous system (CNS), CB1 is overwhelmingly represented over CB2 and particularly abundant in cortical regions, the hippocampus, cerebellum and basal ganglia while CB2 may be restricted to microglia or neurons in the brainstem  and cerebellum. Deactivation of the EC is due to a rapid enzymatic degradation in the synaptic cleft or after membrane transport. The ECS is thought to be a neuromodulator and an immunomodulator. In the CNS, the ECS can influence food intake, endocrine release, motor control, cognitive processes, emotions and perception. Cannabinoids treatment has been shown to be neuroprotective under many experimental conditions. Drugs that manipulate the ECS are currently evaluated in various diseases ranging from cancer to AIDS for their peripheral analgesic and immunosuppressive properties. Their anti-inflammatory actions may make them useful in the treatment of multiple sclerosis, Parkinson’s disease and AD. Very little in vivo evidence to support the use of EC receptor agonists has been reported, although in vitro studies have found evidence for their anti-inflammatory effectiveness. Our recent work demonstrated the anti-inflammatory effect of a chronic treatment of a low dose of the CBr agonist WIN-55,212-2 (without psychoactive effects) on the consequences of chronic neuroinflammation induced by the infusion of LPS into the 4th ventricle of young rats. Moreover, that same anti-inflammatory effect was found using a non-psychoactive dose given by slow subcutaneous infusion of WIN-55,212-2 to healthy aged rats; these rats also demonstrated improved spatial memory. Our ongoing work in aged rats has shown that treatment with the CBr agonist WIN-55,212-2 increases neurogenesis in the hippocampus. Our preliminary data suggest that the neurogenic and anti-inflammatory effects in aged rats are due to the agonist/antagonist properties of WIN-55,212-2 at multiple receptors.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408719/

The endocannabinoid system in ageing: a new target for drug development.

Abstract

“Endocannabinoids are a new class of lipids, which include amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol are the main endogenous agonists of cannabinoid receptors able to mimic several pharmacological effects of Delta(9)-tetrahydrocannabinol, the active principle of Cannabis sativa preparations like hashish and marijuana. AEA is released “on demand” from membrane lipids, and its activity at the receptors is limited by cellular uptake followed by intracellular hydrolysis. Together with AEA and congeners, the proteins which bind, synthesize, transport and hydrolyze AEA form the “endocannabinoid system”. Endogenous cannabinoids are present in the central nervous system and in peripheral tissues, suggesting a physiological role as broad spectrum modulators. This review summarizes the main features of the endocannabinoid system, and the latest advances on its involvement in ageing of central and peripheral cells. In addition, the therapeutic potential of recently developed drugs able to modulate the endocannabinoid tone for the treatment of ageing and age-related human pathologies will be reviewed.”

http://www.ncbi.nlm.nih.gov/pubmed/17100593

Curing addiction with cannabis medicines

“Smokers trying to quit in the future could do it with the help of cannabis based medicines, according to research from The University of Nottingham.

Teams of pharmacologists, studying the cannabis-like compounds which exist naturally in our bodies (endocannabinoids), are exploring the potential for medical treatment. This includes treating conditions as diverse as obesity, diabetes, depression and addiction to substances like nicotine.

Scientists have known about endocannabinoids since the mid-1990s. This led to an explosion in the number of researchers looking into the future medical uses of cannabinoids and cannabis compounds.

Dr Steve Alexander, Associate Professor in the School of Biomedical Sciences, focused on a number of these projects in editing the first themed podcast for the British Journal of Pharmacology.

Dr Alexander said: “It is clear that there is very realistic potential for cannabinoids as medicines. Scientists are looking at a range of possible applications.”

One of these researchers is Professor David Kendall, a cellular pharmacologist at the University: “The brain is full of cannabinoid receptors. And so, not surprisingly with diseases like depression and anxiety, there’s a great deal of interest in exploiting these receptors and in doing so, developing anti-depressant compounds.”

Addiction is a real target – researchers like Professor Kendall believe the endocannabinoids could be a crucial link to addictive behaviour: “We know that the endocannabinoid system is intimately involved in reward pathways and drug seeking behaviour. So this tends to indicate that that if the link involving endocannabinoids and the reward pathway, using inhibitors, can be interrupted, it could turn down the drive to seek addictive agents like nicotine.”

Because cannabinoids have also been shown to bring down blood pressure, it is hoped that related compounds can be used in patients with conditions like hypertension.

Dr Michael Randall, a cardiovascular pharmacologist at the University has looked at how endocannabinoids cause blood vessels to relax. “This could have many implications,” Dr Randall said. “The endocannabinoids appear to lower blood pressure under certain conditions; states of shock for example. If the endocannabinoids are of physiological importance, this could have real therapeutic possibilities.”

“In terms of getting better medicines the endocannabinoid system has a lot to offer,” said Dr Alexander. “The range of cannabis-related medicines is currently limited, but by increasing our knowledge in this area we can increase our stock.”

The University of Nottingham”

http://www.brightsurf.com/news/headlines/36296/Curing_addiction_with_cannabis_medicines.html

Involvement of the endogenous cannabinoid system in the effects of alcohol in the mesolimbic reward circuit: electrophysiological evidence in vivo.

Abstract

“RATIONALE:

Several lines of evidence indicate that the endogenous cannabinoid system is involved in the pharmacological and behavioural effects of alcohol. The mesolimbic dopaminergic (DA) system and the nucleus accumbens (NAc) process rewarding properties of drugs of abuse, including alcohol and cannabinoids, whereas endocannabinoids in these regions modulate synaptic function and mediate short- and long-term forms of synaptic plasticity.

OBJECTIVES:

The present study was designed to investigate the contribution of the endogenous cannabinoid system in alcohol electrophysiological effects in the mesolimbic reward circuit.

METHODS:

We utilized extracellular single cell recordings from ventral tegmental area (VTA) DA and NAc neurons in anesthetized rats. DA neurons were antidromically identified as projecting to the shell of NAc, whereas NAc putative medium spiny neurons were identified by their evoked responses to basolateral amygdala (BLA) stimulation.

RESULTS:

Alcohol stimulated firing rate of VTA DA neurons and inhibited BLA-evoked NAc neuron spiking responses. The cannabinoid type-1 receptor (CB1) antagonist rimonabant (SR141716A) fully antagonized alcohol effect in both regions. In the NAc, either inhibition of the major catabolic enzyme of the endocannabinoid anandamide, the fatty-acid amyd hydrolase, with URB597 or a pretreatment with the CB1 receptor agonist WIN55212-2 significantly depressed alcohol-induced effects in the NAc.

CONCLUSIONS:

These results corroborate the notion of the involvement of endocannabinoids and their receptors in the actions of alcohol and highlight the endocannabinoid system as a valuable target in the therapy for alcoholism.”

http://www.ncbi.nlm.nih.gov/pubmed/16228194

[The role of the cannabinoid system in the pathogenesis and treatment of alcohol dependence].

Abstract

“The lack of satisfactory results of alcohol dependence treatment force us to search for new directions of research. Recent studies concentrate on endocannabinoid transmission. The results show an interplay between the endocannabinoid and dopaminergic signaling in activation of the limbic reward system. The mechanisms leading to development of dependence are very complex and poorly recognized. Endogenous cannabinoids seem to have an important role in the functioning of this system, both directly and indirectly affecting the level of different neurotransmitters. The effect of alcohol on the endocannabinoid system is also complex and involves changes at the molecular level. Experimental studies have demonstrated an important role of the CB1 receptors in the neurochemical mechanism of alcohol consumption and its regulation. SR141716 (rimonabant), a CB1 receptor antagonist, significantly lowers voluntary alcohol intake and motivation for its consumption in various experimental studies. Very encouraging results of preclinical studies were not completely confirmed in the clinical studies. However, further clinical studies are still necessary.”

http://www.ncbi.nlm.nih.gov/pubmed/21934185