Endocannabinoids Measurement in Human Saliva as Potential Biomarker of Obesity

Background

“The discovery of the endocannabinoid system and of its role in the regulation of energy balance has significantly advanced our understanding of the physiopathological mechanisms leading to obesity and type 2 diabetes. New knowledge on the role of this system in humans has been acquired by measuring blood endocannabinoids. Here we explored endocannabinoids and related N-acylethanolamines in saliva and verified their changes in relation to body weight status and in response to a meal or to body weight loss.”

“The discovery of the endocannabinoid system (ECS) and of its impact on the regulation of energy homeostasis represents a significant advance in the study of obesity and type 2 diabetes [1][4].”

“The saliva is the first digestive secretion produced in response to the ingestion of food [11]. Therefore, it is reasonable to investigate whether signals and systems involved in the regulation of food intake, such as the ECS, might be present in saliva and exert a functional role. Besides, saliva offers distinctive advantages over serum or plasma as a diagnostic tool, thanks to the non-invasiveness of the collection procedure.”

“The ECS is present in human salivary glands.”

“Changes in salivary endocannabinoids and N-acylethanolamines levels in response to body weight loss.”

“Here we demonstrate that endocannabinoids and related N-acylethanolamines can be reliably detected and quantified in human saliva. Similarly to what already reported for circulating levels in the blood [7], [9], [10], the salivary concentration of AEA and OEA were significantly increased in obese, insulin-resistant subjects as compared to normal weight controls.”

“the present findings overall indicate that salivary AEA might be a useful biomarker in human obesity, in particular considering that salivary samples are easy to collect, require a non-invasive procedure advantageous when performing studies in obese subjects in whom venipuncture may be difficult, and can be repeatedly collected at home by the patient during a therapeutic intervention. This type of tool could therefore be used to better phenotype the obese population, assess responses to treatment, or to further study the physiology of the ECS in humans, by investigating salivary endocannabinoid responses under various conditions.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409167/

Cannabinoid signalling regulates inflammation and energy balance: the importance of the brain-gut axis.

Abstract

“Energy balance is controlled by centres of the brain which receive important inputs from the gastrointestinal tract, liver, pancreas, adipose tissue and skeletal muscle, mediated by many different signalling molecules. Obesity occurs when control of energy intake is not matched by the degree of energy expenditure. Obesity is not only a state of disordered energy balance it is also characterized by systemic inflammation. Systemic inflammation is triggered by the leakage of bacterial lipopolysaccharide through changes in intestinal permeability. The endocannabinoid system, consisting of the cannabinoid receptors, endogenous cannabinoid ligands and their biosynthetic and degradative enzymes, plays vital roles in the control of energy balance, the control of intestinal permeability and immunity. In this review we will discuss how the endocannabinoid system, intestinal microbiota and the brain-gut axis are involved in the regulation of energy balance and the development of obesity-associated systemic inflammation. Through direct and indirect actions throughout the body, the endocannabinoid system controls the development of obesity and its inflammatory complications.”

http://www.ncbi.nlm.nih.gov/pubmed/22269477

The endocannabinoid system : a new target for the regulation of energy balance and metabolism.

Abstract

“Recent studies have provided evidence that the endocannabinoid (EC) system has very significant effects on energy balance and metabolism through the central control of appetite and by affecting peripheral metabolism. Endocannabinoids are endogenous phospholipid derivatives which bind and activate cannabinoid receptors type 1 and type 2 (CB1 and CB2 receptors). The CB1 receptor, a G-protein coupled receptor, is believed to be responsible for the majority of the central effects of endocannaboids on appetite. Chronic positive energy balance and obesity have been associated with an overactivation of the endocannaboid system which has been suggested to contribute to the development of abdominal obesity and to associated metabolic abnormalities which increase the risk of cardiovascular disease and type 2 diabetes. Animal studies had shown that stimulation of the cannabinoid CB1 receptor with endocannaboids such as anandamide could induce first an increase in food intake leading to body weight gain. Furthermore, an exciting development in this field has been the discovery of CB1 receptors in many peripheral tissues, including key organs involved in carbohydrate and lipid metabolism such as the adipose tissue and liver. Thus, blocking CB1 receptors located in the liver and adipose tissue could have an additional impact on the metabolic risk profile beyond what could be explained by the reduction in food intake and the related body weight loss. Preclinical studies have shown that rimonabant, the first CB1-receptor blocker to be available in clinical practice, could not only induce a reduction in food intake, but could also produce body weight loss beyond what could be explained by its effect on food intake. Thus, the evidence from preclinical studies have suggested that CB1 blockade could represent a relevant approach to reduce food intake, to induce body weight loss, and, most importantly, to “fix” the dysmetabolic state of viscerally obese patients at increased cardiometabolic risk.”

http://www.ncbi.nlm.nih.gov/pubmed/17667864

[The role of the endocannabinoid system in the regulation of endocrine function and in the control of energy balance in humans].

Abstract

“The endocannabinoid system has been recently recognized as an important modulatory system in the function of brain, endocrine, and immune tissues. It appears to play a very important regulatory role in the secretion of hormones related to reproductive functions and response to stress. The important elements of this system are: endocannabinoid receptors (types CB1 and CB2), their endogenous ligands (N-arachidonoylethanolamide, 2-arachidonoyl glycerol), enzymes involved in their synthesis and degradation, as well as cannabinoid antagonists. In humans this system also controls energy homeostasis and mainly influences the function of the food intake centers of the central nervous system and gastrointestinal tract activity. The endocannabinoid system regulates not only the central and peripheral mechanisms of food intake, but also lipids synthesis and turnover in the liver and adipose tissue as well as glucose metabolism in muscle cells. Rimonabant, a new and selective central and peripheral cannabinoid-1 receptor (CB1) blocker, has been shown to reduce body weight and improve cardiovascular risk factor (metabolic syndrome) in obese patients by increasing HDL-cholesterol and adiponectin blood levels as well as decreasing LDL-cholesterol, leptin, and C-reactive protein (a proinflammatory marker) concentrations. It is therefore possible to speculate about a future clinical use of CB1 antagonists, as a means of improving gonadotrophin pulsatility and fertilization capacity as well as the prevention of cardiovasculary disease and type 2 diabetes mellitus. Drugs acting as agonists of CB1 receptors (Dronabinol, Dexanabinol) are currently proposed for evaluation as drugs to treat neurodegenerative disorders (Alzheimer’s and Parkinson’s diseases), epilepsy, anxiety, and stroke.”

http://www.ncbi.nlm.nih.gov/pubmed/17369778

[Endocannabinoid system and energy metabolism: physiology and pathophysiology].

Abstract

“The ability of the endocannabinoid system to control appetite, food intake and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system has recently been shown to control several metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the skeletal muscles and the endocrine pancreas. The relevance of the system is further strengthened by the notion that visceral obesity seems to be a condition in which an overactivation of the endocannabinoid system occurs, therefore drugs interfering with this overactivation by blocking CB1 receptor are considered as valuable candidates for the treatment of obesity and related cardiometabolic risk factors.”

http://www.ncbi.nlm.nih.gov/pubmed/18773754

The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning?

Abstract

“The endocannabinoid system (ECS) consists of two receptors (CB(1) and CB(2)), several endogenous ligands (primarily anandamide and 2-AG), and over a dozen ligand-metabolizing enzymes. The ECS regulates many aspects of embryological development and homeostasis, including neuroprotection and neural plasticity, immunity and inflammation, apoptosis and carcinogenesis, pain and emotional memory, and the focus of this review: hunger, feeding, and metabolism. This mini-review summarizes the main findings that supported the clinical use of CB1 antagonists/inverse agonists, the clinical concerns that have emerged, and the possible future of cannabinoid-based therapy of obesity and related diseases. The ECS controls energy balance and lipid metabolism centrally (in the hypothalamus and mesolimbic pathways) and peripherally (in adipocytes, liver, skeletal muscle and pancreatic islet cells), acting through numerous anorexigenic and orexigenic pathways. Obese people seem to display an increased endocannabinoid tone, driving CB(1) receptor in a feed-forward dysfunction. Several CB(1) antagonists/inverse agonists have been developed for the treatment of obesity. Although these drugs were found to be efficacious at reducing food intake as well as abdominal adiposity and cardiometabolic risk factors, they resulted in adverse psychiatric effects that limited their use and finally led to the end of the clinical use of systemic CB(1) ligands with significant inverse agonist activity for complicated obesity. However, the existence of alternatives such as CB(1) partial agonists, neutral antagonists, antagonists restricted to the periphery, allosteric modulators and other potential targets within the ECS indicate that a cannabinoid-based therapy for the management of obesity and its associated cardiometabolic sequelae should remain open for consideration.”

http://www.ncbi.nlm.nih.gov/pubmed/20347862

Cannabinoid receptors as therapeutic targets for obesity and metabolic diseases.

Abstract

“One of the most interesting pharmacological targets proposed in the past ten years for fighting obesity and related metabolic disorders is the endocannabinoid system. The role of the endocannabinoid system is crucial in regulating the rewarding properties of food, in controlling energy balance by acting at the hypothalamic circuitries involved in food intake, and in peripheral metabolism by influencing adipocytes, hepatocytes, myocytes and pancreatic endocrine cells. Obesity seems to be a condition associated with a pathological overactivation of the endocannabinoid system; therefore, restoring a normal endocannabinoid tone by antagonizing the cannabinoid receptor type 1 (CB(1)) could help arrest both the development and the maintenance of obesity.”

http://www.ncbi.nlm.nih.gov/pubmed/17027338

The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance

Abstract

“During the last few years, the endocannabinoid system has emerged as a highly relevant topic in the scientific community. Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and CB2 receptor, first discovered as the molecular targets of the psychotropic component of the plant Cannabis sativa, participate in the physiological modulation of many central and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain. CB1 receptor is expressed in the hypothalamus and the pituitary gland, and its activation is known to modulate all the endocrine hypothalamic-peripheral endocrine axes. An increasing amount of data highlights the role of the system in the stress response by influencing the hypothalamic-pituitary-adrenal axis and in the control of reproduction by modifying gonadotropin release, fertility, and sexual behavior. The ability of the endocannabinoid system to control appetite, food intake, and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the gastrointestinal tract, and, possibly, skeletal muscle. The relevance of the system is further strenghtened by the notion that drugs interfering with the activity of the endocannabinoid system are considered as promising candidates for the treatment of various diseases, including obesity.”

I. Introduction

“THE FIRST STEPS in the discovery of the endocannabinoid system date back almost 4000 yr, when the therapeutic and psychotropic actions of the plant Cannabis sativa were first documented in India (1). Over the last 40 yr, after Gaoni and Mechoulam (2) purified the psychoactive component from hemp, a stunning amount of research has revealed the endocannabinoid system as a central modulatory system in animal physiology.

Elements of the endocannabinoid system comprise the cannabinoid receptors, the endogenous lipid ligands (endocannabinoids), and the machinery for their biosynthesis and metabolism (3, 4). Despite public concern related to the abuse of marijuana and its derivatives, the research on the endocannabinoid system has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. This review aims to provide an overview on the pivotal role of the endocannabinoid system in the modulation of the neuroendocrine and peripheral endocrine systems. Moreover, in the context of the recently proposed therapeutic applications of cannabinoid receptor antagonists in the treatment of obesity, the key role of the endocannabinoid system in the control of eating behavior, food intake, and energy metabolism will be discussed in the light of the recent data obtained from human and animal studies.”

http://edrv.endojournals.org/content/27/1/73.long

How many sites of action for endocannabinoids to control energy metabolism?

Abstract

“The promising results obtained by clinical trials using Rimonabant to tackle visceral obesity and related disorders recently promoted a remarkable impulse to carry out detailed investigations into the mechanisms of action of endocannabinoids in regulating food intake and energy metabolism. The endocannabinoid system has been known for many years to play an important role in the modulation of the neuronal pathways mediating the rewarding properties of food. However, in the last few years, with the advanced understanding of the crucial role of the hypothalamic neuronal network in the regulation of appetite, several studies have also directed attention to the orexigenic role of the endocannabinoid system, substantiating the well known appetite stimulating properties of derivatives of Cannabis sativa. Furthermore, the last 2 years have seen a number of relevant publications emphasizing the role of endocannabinoids as significant players in various peripheral metabolic processes. To date, the roles of the endocannabinoid system in influencing energy metabolism have proved to be more complex than was formerly believed. However, the diverse ability to modulate both central and peripheral processes highlights the pivotal involvement of the endocannabinoid system in the control of metabolic processes. This review describes the roles of endocannabinoids and the cannabinoid type 1 receptor (CB1) in the control of energy balance.”

http://www.ncbi.nlm.nih.gov/pubmed/16570104

The role of the endocannabinoid system in the control of energy homeostasis

Abstract

“The endocannabinoid system has recently emerged as an important regulator of energy homeostasis, involved in the control of both appetite and peripheral fat metabolism. We briefly review current understanding of the possible sites of action and cellular mechanisms involved in the central appetitive and peripheral metabolic effects of endocannabinoids. Studies in our laboratory, using leptin-deficient obese rodents and CB1 cannabinoid receptor (CB1)-deficient mice, have indicated that endocannabinoids acting via CB1 are involved in the hunger-induced increase in food intake and are negatively regulated by leptin in brain areas involved in appetite control, including the hypothalamus, limbic forebrain and amygdala. CB1-/- mice are lean and are resistant to diet-induced obesity (DIO) despite similar energy intake to wild-type mice with DIO, suggesting that CB1 regulation of body weight involves additional peripheral targets. Such targets appear to include both adipose tissue and the liver. CB1 expressed in adipocytes has been implicated in the control of adiponectin secretion and lipoprotein lipase activity. Recent findings indicate that both endocannabinoids and CB1 are present in the liver and are upregulated in DIO. CB1 stimulation increases de novo hepatic lipogenesis through activation of the fatty acid biosynthetic pathway. Components of this pathway are also expressed in the hypothalamus where they have been implicated in the regulation of appetite. The fatty acid biosynthetic pathway may thus represent a common molecular target for the central appetitive and peripheral metabolic effects of endocannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/16570103