Nutritional Value of Commercial Protein-Rich Plant Products.

 Plant Foods for Human Nutrition

“The goal of this work was to analyze nutritional value of various minimally processed commercial products of plant protein sources such as faba bean (Vicia faba), lupin (Lupinus angustifolius), rapeseed press cake (Brassica rapa/napus subsp. Oleifera), flaxseed (Linum usitatissimum), oil hemp seed (Cannabis sativa), buckwheat (Fagopyrum esculentum), and quinoa (Chenopodium quinoa). Basic composition and various nutritional components like amino acids, sugars, minerals, and dietary fiber were determined. Nearly all the samples studied could be considered as good sources of essential amino acids, minerals and dietary fiber. The highest content of crude protein (over 30 g/100 g DW) was found in faba bean, blue lupin and rapeseed press cake. The total amount of essential amino acids (EAA) ranged from 25.8 g/16 g N in oil hemp hulls to 41.5 g/16 g N in pearled quinoa. All the samples studied have a nutritionally favorable composition with significant health benefit potential. Processing (dehulling or pearling) affected greatly to the contents of analyzed nutrients.”

https://www.ncbi.nlm.nih.gov/pubmed/29500810

https://link.springer.com/article/10.1007%2Fs11130-018-0660-7

Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase

Cover image

“Hemp seeds are of great nutritional value, containing all essential amino acids and fatty acids in sufficient amount and ratio to meet the dietary human demand.

Hemp seeds do not contain cannabinoids, and because of their high contents of ω-3 fatty acids, are enjoying a growing popularity as a super-food to beneficially affect chronic inflammation.

Seeds also lack the typical phenolics of hemp leaves and inflorescences, but we found that sprouting, while not triggering the production of cannabinoids, could nevertheless induce the production of the anti-inflammatory prenylflavonoids cannflavins A and B.

This effect was especially marked in Ermo, a cannabinoid-free variety of Cannabis sativa L. Microsomal prostaglandin E2 synthase (mPGES-1) and 5-lipoxygenase (5-LO) were identified as the molecular targets of cannflavins A and B, solving an almost three-decade old uncertainty on the mechanism of their the anti-inflammatory activity.

No change on the fatty acid profile was observed during sprouting, and the presence of lipophilic flavonoids combines with the high concentration of ω-3 essential acids to qualify sprouts from Ermo as a novel anti-inflammatory hemp food product worth considering for mass production and commercial development.”

http://www.sciencedirect.com/science/article/pii/S2213434414000176

Proteomic characterization of hempseed (Cannabis Sativa L.).

“Hempseed is an underexploited non-legume protein-rich seed. Although its protein is well-known for its digestibility, essential amino acid composition, and useful techno-functional properties, a comprehensive proteome characterization is still lacking. The objective of this work was to fill this knowledge gap and provide information useful for a better exploitation of this seed in different food products.”

Image 1

“This paper presents an investigation on hempseed proteome.

The experimental approach, based on combinatorial peptide ligand libraries (CPLLs), SDS-PAGE separation, nLC-ESI-MS/MS identification, and database search, permitted identifying in total 181 expressed proteins. This very large number of identifications was achieved by searching in two databases: Cannabis sativa L. (56 gene products identified) and Arabidopsis thaliana(125 gene products identified). By performing a protein-protein association network analysis using the STRING software, it was possible to build the first interactomic map of all detected proteins, characterized by 137 nodes and 410 interactions. Finally, a Gene Ontology analysis of the identified species permitted to classify their molecular functions: the great majority is involved in the seed metabolic processes (41%), responses to stimulus (8%), and biological process (7%).”

http://www.sciencedirect.com/science/article/pii/S1874391916302354