(-)-β-Caryophyllene, a CB2 Receptor-Selective Phytocannabinoid, Suppresses Motor Paralysis and Neuroinflammation in a Murine Model of Multiple Sclerosis.

Image result for Int J Mol Sci.

“(-)-β-caryophyllene (BCP), a cannabinoid receptor type 2 (CB2)-selective phytocannabinoid, has already been shown in precedent literature to exhibit both anti-inflammatory and analgesic effects in mouse models of inflammatory and neuropathic pain.

Herein, we endeavored to investigate the therapeutic potential of BCP on experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). Furthermore, we sought to demonstrate some of the mechanisms that underlie the modulation BCP exerts on autoimmune activated T cells, the pro-inflammatory scenery of the central nervous system (CNS), and demyelination.

Our findings demonstrate that BCP significantly ameliorates both the clinical and pathological parameters of EAE. In addition, data hereby presented indicates that mechanisms underlying BCP immunomodulatory effect seems to be linked to its ability to inhibit microglial cells, CD4+ and CD8+ T lymphocytes, as well as protein expression of pro-inflammatory cytokines. Furthermore, it diminished axonal demyelination and modulated Th1/Treg immune balance through the activation of CB2 receptor.

Altogether, our study represents significant implications for clinical research and strongly supports the effectiveness of BCP as a novel molecule to target in the development of effective therapeutic agents for MS.” https://www.ncbi.nlm.nih.gov/pubmed/28368293

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Cannabis in Chinese Medicine: Are Some Traditional Indications Referenced in Ancient Literature Related to Cannabinoids?

Image result for frontiers pharmacology

“Cannabis sativa L. has been cultivated in China for millennia for use as a fiber, food, and medicine. Cannabis sativa L. (Cannabaceae) has a long history of utilization as a fiber and seed crop in China, and its achenes (“seeds”) as well as other plant parts have been recorded in Chinese medical texts for nearly 2000 years.

While the primary applications of cannabis in Chinese medicine center around the use of the achenes, ancient indications for the female inflorescence, and other plant parts include conditions such as pain and mental illness that are the subject of current research into cannabinoids such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC).

In this article, prominent historical applications of cannabis in Chinese medicine are chronologically reviewed, and indications found in ancient Chinese literature that may relate to cannabinoids such as CBD and Δ9-THC are investigated.

In recent years, cannabinoids such as CBD and Δ9-THC have attracted increased attention in the context of modern pharmacology and popular Western culture, yet little research has been done to explore the historical applications of cannabis in Chinese medicine. Given China’s long history of hemp cultivation and its rich body of un-translated medical literature, it is surprising that little academic attention has focused on exploring the ways in which cannabis was used in Chinese medicine. The importance of cannabis as a fiber and food crop in ancient China, combined with the extensive use of the achenes in medicine, makes the Chinese historical record particularly valuable.

Bencao literature opens a window into the history and culture of ancient Chinese medicine. As all parts of the cannabis plant were recorded in bencao texts, the Chinese medical literature can help to clarify many details about the historical applications of cannabis in Chinese medicine, as well as providing clues into the historical prevalence of different biotypes as ancient Chinese farmers gradually selected superior varieties for fiber and seed crops.

The significant differences in how cannabis has been employed in Chinese vs. Western medicine likely relate to differences between drug and fiber biotypes as well as cultural factors, but thus far minimal research has focused on exploring this issue. Similarly, minimal attention has been given to the topic of CBD in Chinese medical history, as even fiber-rich biotypes of cannabis that were not associated with drug use may have had potential therapeutic applications related to CBD. While this modest review can only scratch the surface of the Chinese medical literature of cannabis and the questions it raises, it is hoped that further research will help to further elucidate these questions using a multidisciplinary approach.”

http://journal.frontiersin.org/article/10.3389/fphar.2017.00108/full

β-Caryophyllene/Hydroxypropyl-β-Cyclodextrin Inclusion Complex Improves Cognitive Deficits in Rats with Vascular Dementia through the Cannabinoid Receptor Type 2 -Mediated Pathway.

Image result for Front Pharmacol.

“This work was conducted to prepare β-caryophyllene-hydroxypropyl-β-cyclodextrin inclusion complex (HPβCD/BCP) and investigate its effects and mechanisms on cognitive deficits in vascular dementia (VD) rats.

Overall, the findings demonstrated the protective effects of HPβCD/BCP against cognitive deficits induced by chronic cerebral ischemia and suggested the potential of HPβCD/BCP in the therapy of vascular dementia in the future.”

https://www.ncbi.nlm.nih.gov/pubmed/28154534

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Cyclodextrin” https://en.wikipedia.org/wiki/Cyclodextrin

Cannabimimetic phytochemicals in the diet – an evolutionary link to food selection and metabolic stress adaptation?

Image result for Br J Pharmacol

“The endocannabinoid system (ECS) is a major lipid signaling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but in peripheral organs.

Increasing evidence points towards a dietary component in the modulation of the ECS.

Cannabinoid receptors in hominids co-evolved with diet and the ECS constitutes a feedback loop for food selection and energy metabolism.

Here it is postulated that the mismatch of ancient lipid genes of hunter-gatheres and pastoralists with the high carbohydrate diet introduced by agriculture could be compensated via dietary modulation of the ECS.

In addition to the fatty acid precursors of endocannabinoids the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed.

Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2) receptors may provide adaptive metabolic advantages and counteract inflammation.

Food able to modulate the CB1/CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high calorie diets. In this review the interplay between diet and the ECS is highlighted from an evolutionary perspective.

The emerging potential of cannabimimetic food as nutraceutical strategy is critically discussed.”

https://www.ncbi.nlm.nih.gov/pubmed/27891602

β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease.

“Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area.

The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD.

The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities.”

http://www.ncbi.nlm.nih.gov/pubmed/27316720

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

http://www.thctotalhealthcare.com/category/parkinsons-disease/

Proteomic characterization of hempseed (Cannabis Sativa L.).

“Hempseed is an underexploited non-legume protein-rich seed. Although its protein is well-known for its digestibility, essential amino acid composition, and useful techno-functional properties, a comprehensive proteome characterization is still lacking. The objective of this work was to fill this knowledge gap and provide information useful for a better exploitation of this seed in different food products.”

Image 1

“This paper presents an investigation on hempseed proteome.

The experimental approach, based on combinatorial peptide ligand libraries (CPLLs), SDS-PAGE separation, nLC-ESI-MS/MS identification, and database search, permitted identifying in total 181 expressed proteins. This very large number of identifications was achieved by searching in two databases: Cannabis sativa L. (56 gene products identified) and Arabidopsis thaliana(125 gene products identified). By performing a protein-protein association network analysis using the STRING software, it was possible to build the first interactomic map of all detected proteins, characterized by 137 nodes and 410 interactions. Finally, a Gene Ontology analysis of the identified species permitted to classify their molecular functions: the great majority is involved in the seed metabolic processes (41%), responses to stimulus (8%), and biological process (7%).”

http://www.sciencedirect.com/science/article/pii/S1874391916302354

In Vitro Propagation of Cannabis sativa L. and Evaluation of Regenerated Plants for Genetic Fidelity and Cannabinoids Content for Quality Assurance.

“Cannabis sativa L. (Marijuana; Cannabaceae), one of the oldest medicinal plants in the world, has been used throughout history for fiber, food, as well as for its psychoactive properties.

The dioecious and allogamous nature of C. sativa is the major constraint to maintain the consistency in chemical profile and overall efficacy if grown from seed. Therefore, the present optimized in vitro propagation protocol of the selected elite germplasm via direct organogenesis and quality assurance protocols using genetic and chemical profiling provide an ideal pathway for ensuring the efficacy of micropropagated Cannabis sativa germplasm.

A high frequency shoot organogenesis of C. sativa was obtained from nodal segments in 0.5 μM thidiazuron medium and 95 % in vitro rhizogenesis is obtained on half-strength MS medium supplemented with 500 mg/L activated charcoal and 2.5 μM indole-3-butyric acid. Inter Simple Sequence Repeats (ISSR) and Gas Chromatography-Flame Ionization Detection (GC-FID) are successfully used to monitor the genetic stability in micropropagated plants up to 30 passages in culture and hardened in soil for 8 months.”

http://www.ncbi.nlm.nih.gov/pubmed/27108324

The endocannabinoid system: novel pathway for cardiometabolic Risk-factor reduction.

“Although rimonabant has been approved for use in several countries, the Food and Drug Administration has expressed concern about the potential for adverse neurologic and psychiatric effects, considering the widespread distribution of CB1 receptors in the brain. While more research is clearly needed, the clinical evidence shows that CB1-receptor blockade with rimonabant improves multiple cardiovascular and metabolic variables, including body weight and waist circumference, HDL-C, triglycerides, and glucose metabolism. Furthermore, these effects, which are probably mediated by both peripheral and central actions in the ECS, appear to be greater than the improvements that would be expected from weight loss alone. There are multiple ongoing and planned studies with rimonabant as well as several other CB-receptor blockers (e.g., taranabant, CP-945,598). While diet and exercise are the cornerstones of cardiometabolic risk-factor reduction, improved pharmacotherapies are urgently needed. The ECS has provided us with new insights and a promising new avenue for the management of obesity and its associated cardiometabolic risk factors.”

http://www.ncbi.nlm.nih.gov/pubmed/18047036

The cardiac and haemostatic effects of dietary hempseed

Logo of nutrmeta

“Cannabis sativa L. is an annual plant in the Cannabaceae family. It has been an important source of food, fiber, medicine and psychoactive/religious drug since prehistoric times. Hemp has a botanical relationship to drug/medicinal varieties of Cannabis. However, hempseed no longer contains psychotropic action and instead may provide significant health benefits. Hempseed has an excellent content of omega-3 and omega-6 fatty acids. These compounds have beneficial effects on our cardiovascular health.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868018/

Endocannabinoid Regulation of Neuroendocrine Systems.

“The hypothalamus is a part of the brain that is critical for sustaining life through its homeostatic control and integrative regulation of the autonomic nervous system and neuroendocrine systems. Neuroendocrine function in mammals is mediated mainly through the control of pituitary hormone secretion by diverse neuroendocrine cell groups in the hypothalamus.

Cannabinoid receptors are expressed throughout the hypothalamus, and endocannabinoids have been found to exert pronounced regulatory effects on neuroendocrine function via modulation of the outputs of several neuroendocrine systems.

Here, we review the physiological regulation of neuroendocrine function by endocannabinoids, focusing on the role of endocannabinoids in the neuroendocrine regulation of the stress response, food intake, fluid homeostasis, and reproductive function.

Cannabis sativa (marijuana) has a long history of recreational and/or medicinal use dating back to ancient times. It was used as an analgesic, anesthetic, and antianxiety herb as early as 2600 B.C.

The hedonic, anxiolytic, and mood-elevating properties of cannabis have also been cited in ancient records from different cultures. However, it was not until 1964 that the psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol, was isolated and its chemical structure determined (Gaoni & Mechoulam, 1964).”