A molecular basis of the therapeutic and psychoactive properties of cannabis (delta9-tetrahydrocannabinol).

Abstract

“All of the therapeutic properties of marihuana (analgesic, antiemetic, appetite stimulant, antiglaucoma) have been duplicated by the tetrahydrocannabinol (THC) molecule or its synthetic derivatives. Today, the molecular mechanisms of action of these compounds have led to a general understanding of the pharmacological effects of marihuana and of its therapeutic properties. These mechanisms involve the specific binding of THC to the 7-transmembrane (7TM) domain G protein-linked receptor, a molecular switch which regulates signal transduction in the cell membrane. The natural ligand of the 7TM receptor is an eicosanoid, arachidonylethanolamide (AEA), generated in the membrane and derived from arachidonic acid. THC acts as a substitute ligand to the 7TM receptor site of AEA. THC would deregulate the physiological function of the 7TM receptor and of its ligand AEA. As a result, the therapeutic effects of the drug may not be separated from its adverse psychoactive and cardiovascular effects. The binding of THC to the 7TM receptor site of AEA induces allosteric changes in the receptor sites of neurotransmitter and opiates resulting in variable interactions and pharmacological responses. The pharmacokinetics of THC with its prolonged storage in fat and its slow release result in variable and delayed pharmacological response, which precludes precise dosing to achieve timely therapeutic effects. The experimental use of THC and of its synthetic analogues, agonists, and antagonists has provided novel information in the nature of molecular signaling in the cell membrane. As a result, the relationships between allosteric receptor responsiveness, molecular configuration of proteins, and physiological regulation of cellular and organ function may be further investigated.”

http://www.ncbi.nlm.nih.gov/pubmed/12188105

Cannabinoid signalling in the enteric nervous system.

Abstract

“Cannabinoid signalling is an important mechanism of synaptic modulation in the nervous system. Endogenous cannabinoids (anandamide and 2-arachidonyl-glycerol) are synthesized and released via calcium-activated biosynthetic pathways. Exogenous cannabinoids and endocannabinoids act on CB1 and CB2 receptors. CB1 receptors are neuronal receptors which couple via G-proteins to inhibition of adenylate cyclase or to activation or inhibition of ion channels. CB2 receptors are expressed by immune cells and cannabinoids can suppress immune function. In the central nervous system, the endocannabinoids may function as retrograde signals released by the postsynaptic neuron to inhibit neurotransmitter release from presynaptic nerve terminals. Enteric neurons also express CB receptors. Exogenously applied CB receptor agonists inhibit enteric neuronal activity but it is not clear if endocannabinoids released by enteric neurons can produce similar responses in the enteric nervous system (ENS). In this issue of Neurogastroenterology and Motility, Boesmans et al. show that CB1 receptor activation on myenteric neurons maintained in primary culture can suppress neuronal activity, inhibit synaptic transmission and mitochondrial transport along axons. They also provide initial evidence that myenteric neurons (or other cell types present in the cultures) release endocannabinoids and which activate CB1 receptors constitutively. These data provide new information about targets for cannabinoid signalling in the ENS and highlight the potential importance of CB receptors as drug targets. It is necessary that future work extends these interesting findings to intact tissues and ideally to the in vivo setting.”

http://www.ncbi.nlm.nih.gov/pubmed/19689654

The neurobiology and evolution of cannabinoid signalling.

Abstract

“The plant Cannabis sativa has been used by humans for thousands of years because of its psychoactivity. The major psychoactive ingredient of cannabis is Delta(9)-tetrahydrocannabinol, which exerts effects in the brain by binding to a G-protein-coupled receptor known as the CB1 cannabinoid receptor. The discovery of this receptor indicated that endogenous cannabinoids may occur in the brain, which act as physiological ligands for CB1. Two putative endocannabinoid ligands, arachidonylethanolamide (‘anandamide’) and 2-arachidonylglycerol, have been identified, giving rise to the concept of a cannabinoid signalling system. Little is known about how or where these compounds are synthesized in the brain and how this relates to CB1 expression. However, detailed neuroanatomical and electrophysiological analysis of mammalian nervous systems has revealed that the CB1 receptor is targeted to the presynaptic terminals of neurons where it acts to inhibit release of ‘classical’ neurotransmitters. Moreover, an enzyme that inactivates endocannabinoids, fatty acid amide hydrolase, appears to be preferentially targeted to the somatodendritic compartment of neurons that are postsynaptic to CB1-expressing axon terminals. Based on these findings, we present here a model of cannabinoid signalling in which anandamide is synthesized by postsynaptic cells and acts as a retrograde messenger molecule to modulate neurotransmitter release from presynaptic terminals. Using this model as a framework, we discuss the role of cannabinoid signalling in different regions of the nervous system in relation to the characteristic physiological actions of cannabinoids in mammals, which include effects on movement, memory, pain and smooth muscle contractility. The discovery of the cannabinoid signalling system in mammals has prompted investigation of the occurrence of this pathway in non-mammalian animals. Here we review the evidence for the existence of cannabinoid receptors in non-mammalian vertebrates and invertebrates and discuss the evolution of the cannabinoid signalling system. Genes encoding orthologues of the mammalian CB1 receptor have been identified in a fish, an amphibian and a bird, indicating that CB1 receptors may occur throughout the vertebrates. Pharmacological actions of cannabinoids and specific binding sites for cannabinoids have been reported in several invertebrate species, but the molecular basis for these effects is not known. Importantly, however, the genomes of the protostomian invertebrates Drosophila melanogaster and Caenorhabditis elegans do not contain CB1 orthologues, indicating that CB1-like cannabinoid receptors may have evolved after the divergence of deuterostomes (e.g. vertebrates and echinoderms) and protostomes. Phylogenetic analysis of the relationship of vertebrate CB1 receptors with other G-protein-coupled receptors reveals that the paralogues that appear to share the most recent common evolutionary origin with CB1 are lysophospholipid receptors, melanocortin receptors and adenosine receptors. Interestingly, as with CB1, each of these receptor types does not appear to have Drosophila orthologues, indicating that this group of receptors may not occur in protostomian invertebrates. We conclude that the cannabinoid signalling system may be quite restricted in its phylogenetic distribution, probably occurring only in the deuterostomian clade of the animal kingdom and possibly only in vertebrates.”

http://www.ncbi.nlm.nih.gov/pubmed/11316486

Cannabinoid receptors: nomenclature and pharmacological principles.

Abstract

“The CB1 and CB2 cannabinoid receptors are members of the G protein-coupled receptor (GPCR) family that are pharmacologically well defined. However, the discovery of additional sites of action for endocannabinoids as well as synthetic cannabinoid compounds suggests the existence of additional cannabinoid receptors. Here we review this evidence, as well as the current nomenclature for classifying a target as a cannabinoid receptor. Basic pharmacological definitions, principles and experimental conditions are discussed in order to place in context the mechanisms underlying cannabinoid receptor activation. Constitutive (agonist-independent) activity is observed with the overexpression of many GPCRs, including cannabinoid receptors. Allosteric modulators can alter the pharmacological responses of cannabinoid receptors. The complex molecular architecture of each of the cannabinoid receptors allows for a single receptor to recognize multiple classes of compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. Importantly, the basic biology of the endocannabinoid system will continue to be revealed by ongoing investigations.”

http://www.ncbi.nlm.nih.gov/pubmed/22421596

Endocannabinoids and Their Implications for Epilepsy

“This review covers the main features of a newly discovered intercellular signaling system in which endogenous ligands of the brain’s cannabinoid receptors, or endocannabinoids, serve as retrograde messengers that enable a cell to control the strength of its own synaptic inputs. Endocannabinoids are released by bursts of action potentials, including events resembling interictal spikes, and probably by seizures as well. Activation of cannabinoid receptors has been implicated in neuroprotection against excitotoxicity and can help explain the anticonvulsant properties of cannabinoids that have been known since antiquity.”

“Cannabis in its various forms, including marijuana and hashish, is produced from the flowers and leaves of the hemp plant, Cannabis sativa. Through their primary psychoactive ingredient, Δ9-tetrahydrocannabinol (THC), these drugs affect the central nervous system by activating specific membrane-bound receptors. The primary brain receptors, cannabinoid receptors type 1 (CB1), are G protein–coupled, seven-transmembrane domain proteins that share numerous similarities with heterotrimeric G protein–coupled receptors for conventional neurotransmitters such as γ-aminobutyric acid (GABA) and glutamate. The CB1s bind THC with a high degree of selectivity and are heterogeneously distributed throughout the brain. Inasmuch as THC is a plant-derived compound not produced in mammals, endogenous ligands must exist for the cannabinoid receptor, that is, endocannabinoids. Indeed, several endogenous ligands for CB1 have been discovered, with anandamide being the first. Anandamide and 2-arachidonoyl glycerol (2-AG), are thought to be the major brain endocannabinoids, with regional differences in which one or the other predominates. Endocannabinoids have been strongly implicated in a growing variety of physiologic phenomena, including regulation of eating, anxiety, pain, extinction of aversive memories, and neuroprotection. Potent agonists and antagonists for CB1 exist and may serve as the foundation of new therapeutic strategies for treating pathologies. The voluminous work summarized here has been extensively covered in recent reviews on cannabinoid neurochemistry and pharmacology as well as neurophysiology. This review focuses on the neurophysiology of the endocannabinoid systems.”

“Conclusion

From what is known about their synthesis and release, endocannabinoids should be produced under many conditions of increased neuronal excitability and specific intercellular signaling. For example, an epileptic seizure, with its large swings in transmembrane voltage, increases in intracellular calcium, and marked release of neurotransmitters, such as acetylcholine and glutamate, should prominently release endocannabinoids. Indeed, seizures induced by kainic acid (a glutamate agonist) increase hippocampal levels of anandamide in normal and wild-type mice. Intriguingly, CB1 knockout mice and normal mice treated with a CB1 antagonist had more pronounced seizures and more severe excitotoxic cell death than untreated normal mice. Although the detailed mechanisms of neuroprotection have not been worked out, the rapid increases in expression of the immediate early genes, c-fos and zipf268, and subsequent increase in brain-derived neurotrophic factor (BDNF) normally induced by kainic acid, were absent in the CB1 knockout mice. The results complement previous evidence that exogenous cannabinoids can be neuroprotective and show that CB1 activation by seizure-induced release of endocannabinoids also is normally neuroprotective.”

“The important new directions being opened by investigations of endocannabinoids underscore the prescient opinion of Robert Christison, who, in 1848, noting its various beneficial effects, argued that cannabis “is a remedy which deserves a more extensive inquiry…””

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176361/

The Endogenous Cannabinoid System Regulates Seizure Frequency and Duration in a Model of Temporal Lobe Epilepsy

“Several lines of evidence suggest that cannabinoid compounds are anticonvulsant. However, the anticonvulsant potential of cannabinoids and, moreover, the role of the endogenous cannabinoid system in regulating seizure activity has not been tested in an in vivo model of epilepsy that is characterized by spontaneous, recurrent seizures. Here, using the rat pilocarpine model of epilepsy, we show that the marijuana extract Δ9-tetrahydrocannabinol (10 mg/kg) as well as the cannabimimetic, 4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1-i,j]quinolin-6-one [R(+)WIN55,212 (5 mg/kg)], completely abolished spontaneous epileptic seizures. Conversely, application of the cannabinoid CB1 receptor (CB1) antagonist, N-(piperidin-1-yl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A), significantly increased both seizure duration and frequency. In some animals, CB1 receptor antagonism resulted in seizure durations that were protracted to a level consistent with the clinical condition status epilepticus… These data indicate not only anticonvulsant activity of exogenously applied cannabinoids but also suggest that endogenous cannabinoid tone modulates seizure termination and duration through activation of the CB1 receptor… By demonstrating a role for the endogenous cannabinoid system in regulating seizure activity, these studies define a role for the endogenous cannabinoid system in modulating neuroexcitation and suggest that plasticity of the CB1 receptor occurs with epilepsy.”

“Characterized by spontaneously recurrent seizures, epilepsy is one of the most common neurological conditions. Understanding the factors that contribute to seizure initiation and termination has important implications for our ability to treat epilepsy and for the potential development of novel anticonvulsant agents. Previous evidence has suggested that the endogenous cannabinoid system may be a novel locus of anticonvulsant activity in the brain. Using the maximal electroshock model of short-term seizure, our laboratory determined that cannabinoid compounds block seizure spread via a cannabinoid CB1 receptor-dependent mechanism. Further study revealed that application of a CB1 receptor antagonist lowered the electroshock seizure threshold, indicating that elimination of endogenous cannabinoid tone at the CB1 receptor may increase seizure susceptibility.”

“The CB1 receptor is the most highly expressed G-protein-coupled receptor in brain and has been implicated in regulation of neuronal excitability. The endogenous cannabinoids, arachidonylethanolamine and 2-arachidonylglycerol (2-AG), are synthesized “on demand” in response to sustained neuronal depolarization and elevated intracellular calcium levels; both of these events occur with seizure activity. The neuronal hyperexcitability that accompanies seizure discharge may stimulate endogenous cannabinoid synthesis and subsequently result in CB1 receptor activation. In light of cannabinoid effects on neurotransmission, increased CB1 receptor activation could influence seizure activity. However, no studies have evaluated the role of the endogenous cannabinoid system in an intact model of epilepsy.”

“This study was initiated to evaluate the role of the CB1 receptor and the endogenous cannabinoid system in regulating seizure activity in a long-term model of epilepsy. We used the pilocarpine model of temporal lobe, partial-complex epilepsy; a rat model of acquired, refractory epilepsy that produces spontaneous recurrent seizures for the lifetime of the animal. The pilocarpine model has been shown to closely resemble human refractory partial-complex epilepsy. In this study, seizure frequency and duration were determined by continuous electrographic and video recording of each epileptic animal. The CB1 receptor agonists R(+)WIN55,212 and Δ9-tetrahydrocannabinol (THC) were evaluated for anticonvulsant efficacy. In addition to agonist effects on seizure activity, the effect of CB1 receptor antagonism on seizure frequency and duration was evaluated using the specific antagonist SR141716A. Hippocampal levels of 2-AG during short-term, pilocarpine-induced seizures were measured to determine whether a correlation exists between endogenous cannabinoid synthesis and seizure activity. In addition, Western blot and immunohistochemical analyses were used to evaluate hippocampal CB1 receptor protein expression in the brains of chronically epileptic and sham control rats. The findings presented suggest an anticonvulsant role for the endogenous cannabinoid system and demonstrate that long-term plasticity of the CB1 receptor occurs with epilepsy.”

“Therapeutic Implications for Cannabinoids in the Treatment of Epilepsy. Seizures in patients with refractory, partial-complex epilepsy can be difficult to control despite the use of currently available anticonvulsant medications and surgical interventions. Therefore, there is a clear need for the development of more effective anticonvulsant agents. Some epilepsy patients, seeking alternative treatments, have perceived improvement with marijuana. This has prompted several countries to consider the legalization of marijuana for epilepsy treatment. The pilocarpine model represents a refractory epileptic condition that is not readily treated by conventional anticonvulsants. Our results demonstrate that activation of the CB1 receptor by cannabinoid drugs and possibly endogenous ligands significantly alters seizure activity and is more effective than conventional anticonvulsants in treating the refractory seizures produced in the pilocarpine model. Although the dose dependence and long-term effects of cannabinoid administration on epilepsy must be further investigated, the results presented here provide evidence that warrants a comprehensive assessment of cannabinoid use in the control of refractory epilepsy via the use of animal models and placebo-controlled clinical trials. Although the psychoactive side effects of cannabinoids make their use in the treatment of epilepsy impractical, understanding the mechanisms of endogenous cannabinoid-mediated anticonvulsant action may lead to the development of novel compounds that do not manifest behavioral toxicity. Further investigation of the cannabinoid anticonvulsant phenomenon may illuminate novel therapeutic targets for the treatment of temporal lobe epilepsy as well as more clearly define the physiological function of the endogenous cannabinoid system in brain.”

http://jpet.aspetjournals.org/content/307/1/129.long

Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice

 “Cannabidiol is a Cannabis-derived non-psychotropic compound that exerts a plethora of pharmacological actions, including anti-inflammatory, neuroprotective and antitumour effects, with potential therapeutic interest. However, the actions of cannabidiol in the digestive tract are largely unexplored. In the present study, we investigated the effect of cannabidiol on intestinal motility in normal (control) mice and in mice with intestinal inflammation.”

“Cannabidiol selectively reduces croton oil-induced hypermotility in mice in vivo and this effect involves cannabinoid CB1 receptors and FAAH. In view of its low toxicity in humans, cannabidiol may represent a good candidate to normalize motility in patients with inflammatory bowel disease.”

“The plant Cannabis sativa contains more than 60 terpenophenolic compounds, named phytocannabinoids. The best-studied phytocannabinoid is Δ9-tetrahydrocannabinol, which binds specific G-protein-coupled receptors, named cannabinoid (CB1 and CB2) receptors. The well-known psychotropic effects of Δ9-tetrahydrocannabinol, which are largely mediated by activation of brain cannabinoid CB1 receptors, have always raised a number of clinical and ethical problems. Therefore, a valid therapeutic alternative may be the use of non-psychotropic phytocannabinoids, including cannabidiol (CBD). CBD, unlike Δ9-tetrahydrocannabinol, has very low affinity for both cannabinoid CB1 and CB2 receptors, although it has been proposed that CBD may modulate endocannabinoid function through its ability to inhibit the hydrolysis of anandamide and to act as a transient receptor potential vanilloid 1 agonist. CBD is a major component of Sativex, a preparation of cannabinoids, which has been approved by Health Canada for the treatment of neuropathic pain in multiple sclerosis.”

“The pharmacological profile of CBD has been recently reviewed. Briefly stated, CBD has been shown to exert (1) antioxidant, neuroprotective and antiproliferative actions in cultured cells and (2) anti-anxiety, hypnotic, anticonvulsant, neuroprotective, antinausea, anti-ischaemic, anticancer and notably anti-inflammatory effects in rodents in vivo. The anti-inflammatory effects of CBD have been demonstrated in both acute and chronic experimental models of inflammation, that is, paw oedema and arthritis.”

“In conclusion, we have shown that the marijuana component CBD normalize intestinal motility in an experimental model of ileitis. In vitro results showed antispasmodic actions of CBD on intestinal ileal segments. The inhibitory effect of CBD involves, at least in vivo, cannabinoid CB1 receptors and FAAH. In view of its safety records in humans (an average daily dose of about 700 mg/day for 6 weeks was found to be non-toxic, relative to placebo, in clinical trials; and because CBD reduced motility during inflammation and not in physiological conditions, CBD might be considered as a good candidate to be clinically evaluated for the treatment of hypermotility associated with inflammatory bowel disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2451037/

Endocannabinoids in nervous system health and disease: the big picture in a nutshell.

Abstract

“The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related ‘phytocannabinoid’ compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the ‘endocannabinoids’ and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness.”

http://www.ncbi.nlm.nih.gov/pubmed/23108539

Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance

Abstract

“Type-1 cannabinoid receptor (CB1) is the most abundant G-protein-coupled receptor (GPCR) in the brain. CB1 and its endogenous agonists, the so-called ‘endocannabinoids (eCBs)’, belong to an ancient neurosignalling system that plays important functions in neurodegenerative and neuroinflammatory disorders like Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and multiple sclerosis. For this reason, research on the therapeutic potential of drugs modulating the endogenous tone of eCBs is very intense. Several GPCRs reside within subdomains of the plasma membranes that contain high concentrations of cholesterol: the lipid rafts. Here, the hypothesis that changes in membrane fluidity alter function of the endocannabinoid system, as well as progression of particular neurodegenerative diseases, is described. To this end, the impact of membrane cholesterol on membrane properties and hence on neurodegenerative diseases, as well as on CB1 signalling in vitro and on CB1-dependent neurotransmission within the striatum, is discussed. Overall, present evidence points to the membrane environment as a critical regulator of signal transduction triggered by CB1, and calls for further studies aimed at better clarifying the contribution of membrane lipids to eCBs signalling. The results of these investigations might be exploited also for the development of novel therapeutics able to combat disorders associated with abnormal activity of CB1.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165948/

Cannabinoid receptors and endocannabinoids: role in neuroinflammatory and neurodegenerative disorders.

Abstract

“The G-protein coupled receptors for Δ⁹-tetrahydrocannabinol, the major psychoactive principle of marijuana, are known as cannabinoid receptors of type 1 (CB₁) and 2 (CB₂) and play important functions in degenerative and inflammatory disorders of the central nervous system. Whilst CB₁ receptors are mostly expressed in neurons, where they regulate neurotransmitter release and synaptic strength, CB₂ receptors are found mostly in glial cells and microglia, which become activated and over-express these receptors during disorders such as Alzheimer’s disease, multiple sclerosis, amyotropic lateral sclerosis, Parkinson’s disease, and Huntington’s chorea. The neuromodulatory actions at CB₁ receptors by endogenous agonists (‘endocannabinoids’), of which anandamide and 2-arachidonoylglycerol are the two most studied representatives, allows them to counteract the neurochemical unbalances arising during these disorders. In contrast, the immunomodulatory effects of these lipophilic mediators at CB₂ receptors regulate the activity and function of glia and microglia. Indeed, the level of expression of CB₁ and CB₂ receptors or of enzymes controlling endocannabinoid levels, and hence the concentrations of endocannabinoids, undergo time- and brain region-specific changes during neurodegenerative and neuroinflammatory disorders, with the initial attempt to counteract excitotoxicity and inflammation. Here we discuss this plasticity of the endocannabinoid system during the aforementioned central nervous system disorders, as well as its dysregulation, both of which have opened the way to the use of either direct and indirect activators or blockers of CB₁ and CB₂ receptors for the treatment of the symptoms or progression of these diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/20632970