Therapeutic application of cannabidiol on UVA and UVB irradiated rat skin. A proteomic study

Journal of Pharmaceutical and Biomedical Analysis “UV phototherapy used in chronic skin diseases causes redox imbalance and pro-inflammatory reactions, especially in the case of unchanged skin cells.

To prevent the harmful effects of UV radiation, cannabidiol (CBD) has been used, which has antioxidant and anti-inflammatory properties. Therefore, the aim of this study was to evaluate the effect of CBD on the metabolism of skin keratinocytes in nude rats exposed to UVA/UVB radiation using a proteomic approach.

The results obtained with SDS-PAGE/nanoHPLC/QexactiveOrbiTrap show that exposure of rat’s skin to UVA/UVB radiation, as well as the action of CBD, significantly modified the expression of proteins involved in inflammation, redox balance and apoptosis.

UVA/UVB radiation significantly increased the expression and biological effectiveness of the nuclear factor associated with erythroid factor 2 (Nrf2) and cytoprotective proteins being products of its transcriptional activity, including superoxide dismutase (Cu,Zn-SOD) and the inflammatory response (nuclear receptor coactivator-3 and paralemmin-3), while CBD treatment counteracted and partially eliminated these changes.

Moreover, cannabidiol reversed changes in the UV-induced apoptotic pathways by modifying anti-apoptotic and pro-apoptotic factors (apoptosis regulator Bcl-2 and transforming growth factor-β).

The results show that CBD maintains keratinocyte proteostasis and therefore could be suggested as a protective measure in the prevention of UV-induced metabolic changes in epidermal keratinocytes.”

https://pubmed.ncbi.nlm.nih.gov/33086172/

“In summary, UVA and UVB radiation affect the proteomic profile of keratinocytes of healthy rat skin in different ways. Both types of radiation change the level of proteins involved in the regulation of cellular redox balance, inflammation, and apoptosis. In contrast, topical application of CBD to rat skin, when exposed to UV radiation, helps normalize the expression of keratinocyte proteins that are metabolically relevant by modeling their biosynthesis and degradation. Thus, CBD can maintain the proteostasis of keratinocytes. Because UV therapy is a part of the treatment of skin diseases, e.g. psoriasis, the use of CBD on unchanged skin may be suggested as a protective factor to reduce the metabolic changes caused by UV radiation in unchanged keratinocytes. This suggestion is particularly important when the beneficial effect of cannabidiol on psoriasis-induced skin lesions has recently also been confirmed.”

https://www.sciencedirect.com/science/article/pii/S0731708520315429?via%3Dihub

A Literature Analysis on Medicinal Use and Research of Cannabis in the Meiji Era of Japan

 Journal of Pharmacopuncture“Cannabis is a historical plant which has been used as a medicine in East Asia.

 

Cannabis was prescribed in Meiji era of Japan to alleviate pain and cure the digestive, respiratory, urinary, and nervous system diseases such as indigestion, asthma, tuberculosis, gonorrhea and its complications, insomnia, and nervous prostration.

Cannabis was medically used in Meiji era of Japan and the reporting and sharing of its clinical effect was published on the medical journals like present days.

There were already Cannabis regulations in that era, but its medicinal use was more liberated than nowadays.

It may be a chance to reconsider the current legal system, which strictly controls the use of Cannabis.”

https://pubmed.ncbi.nlm.nih.gov/33072412/

http://www.journal-jop.org/journal/view.html?doi=10.3831/KPI.2020.23.3.142

Cannabinoid Combination Induces Cytoplasmic Vacuolation in MCF-7 Breast Cancer Cells

molecules-logo“This study evaluated the synergistic anti-cancer potential of cannabinoid combinations across the MDA-MB-231 and MCF-7 human breast cancer cell lines. Cannabinoids were combined and their synergistic interactions were evaluated using median effect analysis.

The most promising cannabinoid combination (C6) consisted of tetrahydrocannabinol, cannabigerol (CBG), cannabinol (CBN), and cannabidiol (CBD), and displayed favorable dose reduction indices and limited cytotoxicity against the non-cancerous breast cell line, MCF-10A. C6 exerted its effects in the MCF-7 cell line by inducing cell cycle arrest in the G2 phase, followed by the induction of apoptosis.

Morphological observations indicated the induction of cytoplasmic vacuolation, with further investigation suggesting that the vacuole membrane was derived from the endoplasmic reticulum. In addition, lipid accumulation, increased lysosome size, and significant increases in the endoplasmic reticulum chaperone protein glucose-regulated protein 78 (GRP78) expression were also observed.

The selectivity and ability of cannabinoids to halt cancer cell proliferation via pathways resembling apoptosis, autophagy, and paraptosis shows promise for cannabinoid use in standardized breast cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/33066359/

https://www.mdpi.com/1420-3049/25/20/4682

Cannabidiol (CBD) modulation of apelin in acute respiratory distress syndrome

“Considering lack of target-specific antiviral treatment and vaccination for COVID-19, it is absolutely exigent to have an effective therapeutic modality to reduce hospitalization and mortality rate as well as to improve COVID-19-infected patient outcomes.

In a follow-up study to our recent findings indicating the potential of Cannabidiol (CBD) in the treatment of acute respiratory distress syndrome (ARDS), here we show for the first time that CBD may ameliorate the symptoms of ARDS through up-regulation of apelin, a peptide with significant role in the central and peripheral regulation of immunity, CNS, metabolic and cardiovascular system.

CBD treatment was able to reverse the symptoms of ARDS towards a normal level. Importantly, CBD treatment increased the apelin expression significantly, suggesting a potential crosstalk between apelinergic system and CBD may be the therapeutic target in the treatment of inflammatory diseases such as COVID-19 and many other pathologic conditions.”

https://pubmed.ncbi.nlm.nih.gov/33058425/

“Cannabidiol (CBD) is a non‐psychotropic phytocannabinoid that regulates immune responses in multiple experimental disease models, including work by our laboratory showing a benefit following ARDS‐like injury in mice. Consistent with our findings, a recent commentary, based on anecdotal reports, supports the therapeutic use of CBD in COVID‐19‐infected patients. Our data demonstrate that CBD improves lung structure and exerts a potent anti‐inflammatory effect following experimental ARDS.”

https://onlinelibrary.wiley.com/doi/10.1111/jcmm.15883

Industrial, CBD, and Wild Hemp: How Different Are Their Essential Oil Profile and Antimicrobial Activity?

molecules-logo“Hemp (Cannabis sativa L.) is currently one of the most controversial and promising crops. This study compared nine wild hemp (C. sativa spp. spontanea V.) accessions with 13 registered cultivars, eight breeding lines, and one cannabidiol (CBD) hemp strain belonging to C. sativa L.

The first three groups had similar main essential oil (EO) constituents, but in different concentrations; the CBD hemp had a different EO profile. The concentration of the four major constituents in the industrial hemp lines and wild hemp accessions varied as follows: β-caryophyllene 11-22% and 15.4-29.6%; α-humulene 4.4-7.6% and 5.3-11.9%; caryophyllene oxide 8.6-13.7% and 0.2-31.2%; and humulene epoxide 2, 2.3-5.6% and 1.2-9.5%, respectively.

The concentration of CBD in the EO of wild hemp varied from 6.9 to 52.4% of the total oil while CBD in the EO of the registered cultivars varied from 7.1 to 25%; CBD in the EO of the breeding lines and in the CBD strain varied from 6.4 to 25% and 7.4 to 8.8%, respectively. The concentrations of δ9-tetrahydrocannabinol (THC) in the EO of the three groups of hemp were significantly different, with the highest concentration being 3.5%.

The EO of wild hemp had greater antimicrobial activity compared with the EO of registered cultivars.

This is the first report to show that significant amounts of CBD could be accumulated in the EO of wild and registered cultivars of hemp following hydro-distillation. The amount of CBD in the EO can be greater than that in the EO of the USA strain used for commercial production of CBD. Furthermore, this is among the first reports that show greater antimicrobial activity of the EO of wild hemp vs. the EO of registered cultivars.

The results suggest that wild hemp may offer an excellent opportunity for future breeding and the selection of cultivars with a desirable composition of the EO and possibly CBD-rich EO production.”

https://pubmed.ncbi.nlm.nih.gov/33053634/

https://www.mdpi.com/1420-3049/25/20/4631

Antioxidant and antimicrobial activity of two standardized extracts from a new Chinese accession of non-psychotropic Cannabis sativa L

Phytotherapy Research “The purpose of this study was to evaluate the antioxidant and antimicrobial properties of two extracts from a new Chinese accession (G-309) of Cannabis sativa L. (Δ9 -tetrahydrocannabinol <0.2%) with high content of propyl side chain phytocannabinoids.

Dried flowering tops, as such and after hydrodistillation of the essential oil, were extracted with acidic hexane to produce the Cannabis Chinese hexane extract 1 (CChHE1) and 2 (CChHE2), respectively. The phytochemical profile of CChHE1 and CChHE2 was investigated by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-diode array detector-electrospray ionization-tandem mass spectrometry (LC-DAD-ESI-MS/MS) analyses. The antioxidant properties were assessed by several in vitro cell-free assays. The antimicrobial activity was evaluated against Gram-positive and Gram-negative bacteria and the yeast Candida albicans.

Phytochemical analyses highlighted a high content of cannabidivarinic acid (CBDVA) and tetraydrocannabivarinic acid (THCVA) in CChHE1, and cannabidivarin (CBDV) and tetraydrocannabivarin (THCV) in CChHE2. Both extracts showed remarkable antioxidant activity and strong antimicrobial properties (MIC 39.06 and MBC 39.06-78.13 μg/ml) against both ATCC and methicillin-resistant clinical strains of Staphylococcus aureus.

In conclusion, standardized extracts of C. sativa Chinese accession could be promising for their possible use as novel antibacterial agents for the treatment of widespread S. aureus infections.”

https://pubmed.ncbi.nlm.nih.gov/33034400/

https://onlinelibrary.wiley.com/doi/10.1002/ptr.6891

Biochemical Aspects and Therapeutic Mechanisms of Cannabidiol in Epilepsy

Neuroscience & Biobehavioral Reviews “Epilepsy is a chronic neurological disease characterized by recurrent epileptic seizures. Studies have shown the complexity of epileptogenesis and ictogenesis, in which immunological processes and epigenetic and structural changes in neuronal tissues have been identified as triggering epilepsy.

Cannabidiol (CBD) is a major active component of the Cannabis plant and the source of CBD-enriched products for the treatment of epilepsy and associated diseases.

In this review, we provide an up-to-date discussion on cellular and molecular mechanisms triggered during epilepsy crises, and the phytochemical characteristics of CBD that make it an attractive candidate for controlling rare syndromes, with excellent therapeutic properties. We also discuss possible CBD anticonvulsant mechanisms and molecular targets in neurodegenerative disorders and epilepsy.

Based on these arguments, we conclude that CBD presents a biotecnological potential in the anticonvulsant process, including decreasing dependence on health care in hospitals, and could make the patient’s life more stable, with regard to neurological conditions.”

https://pubmed.ncbi.nlm.nih.gov/33031814/

“Therapeutic properties of cannabidiol in the treatment of epilepsy”

https://www.sciencedirect.com/science/article/abs/pii/S0149763420305832?via%3Dihub

Signaling Through the Type 2 Cannabinoid Receptor Regulates the Severity of Acute and Chronic Graft versus Host Disease

Blood“Graft versus host disease (GVHD) pathophysiology is a complex interplay between cells that comprise the adaptive and innate arms of the immune system. Effective prophylactic strategies are therefore contingent upon approaches that address contributions from both immune cell compartments.

In the current study, we examined the role of the type 2 cannabinoid receptor (CB2R) which is expressed on nearly all immune cells and demonstrated that absence of the CB2R on donor CD4+ or CD8+ T cells, or administration of a selective CB2R pharmacological antagonist, exacerbated acute GVHD lethality. This was accompanied primarily by the expansion of proinflammatory CD8+ T cells indicating that constitutive CB2R expression on T cells preferentially regulated CD8+ T cell alloreactivity. Using a novel CB2R-EGFP reporter mouse, we observed significant loss of CB2R expression on T cells, but not macrophages, during acute GVHD, indicative of differential alterations in receptor expression under inflammatory conditions.

Therapeutic targeting of the CB2R with the agonists, tetrahydrocannabinol (THC) and JWH-133, revealed that only THC mitigated lethal T cell-mediated acute GVHD. Conversely, only JWH-133 was effective in a sclerodermatous chronic GVHD model where macrophages contribute to disease biology. In vitro, both THC and JWH-133 induced arrestin recruitment and ERK phosphorylation via CB2R, but THC had no effect on CB2R-mediated inhibition of adenylyl cyclase.

These studies demonstrate that the CB2R plays a critical role in the regulation of GVHD and suggest that effective therapeutic targeting is dependent upon agonist signaling characteristics and receptor selectivity in conjunction with the composition of pathogenic immune effector cells.”

https://pubmed.ncbi.nlm.nih.gov/33027805/

https://ashpublications.org/blood/article-abstract/doi/10.1182/blood.2020004871/464166/Signaling-Through-the-Type-2-Cannabinoid-Receptor?redirectedFrom=fulltext

Endocannabinoids Inhibit the Induction of Virulence in Enteric Pathogens

Cell | Publons
“Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.”
Figure thumbnail fx1

“Fighting intestinal infections with the body’s own endocannabinoids. By harnessing the power of natural compounds produced in the body and in plants, we may eventually treat infections in a whole new way.”  https://www.sciencedaily.com/releases/2020/10/201007123119.htm

“Study may explain why cannabis plant can reduce symptoms of various bowel conditions” https://www.news-medical.net/news/20201007/Study-could-help-explain-why-cannabis-plant-can-reduce-symptoms-of-various-bowel-conditions.aspx

Treatment of social anxiety disorder and attenuated psychotic symptoms with cannabidiol

See the source image “Anxiety disorders in young people are frequently comorbid with other mental disorders and respond unsatisfactorily to first-line treatment in many cases.

Here, we report the case of a 20-year-old man with severe social anxiety disorder, major depressive disorder, insomnia and attenuated psychotic symptoms despite ongoing treatment with cognitive behavioural therapy and mirtazapine who was treated with adjunctive cannabidiol (CBD) in doses between 200 and 800 mg/day for 6 months.

During treatment with CBD, he experienced subjective benefits to his anxiety, depression and positive symptoms during treatment that were confirmed by clinicians and by standardised research instruments.

Findings from this case study add to existing evidence in support of the safety of CBD and suggest that it may be useful for young people with treatment refractory anxiety and for attenuated psychotic symptoms.”

https://pubmed.ncbi.nlm.nih.gov/33028567/

https://casereports.bmj.com/content/13/10/e235307