Cannabinoid receptor expression in non-small cell lung cancer. Effectiveness of tetrahydrocannabinol and cannabidiol inhibiting cell proliferation and epithelial-mesenchymal transition in vitro.

Image result for plos one “Patients with non-small cell lung cancer (NSCLC) develop resistance to antitumor agents by mechanisms that involve the epithelial-to-mesenchymal transition (EMT). This necessitates the development of new complementary drugs, e.g., cannabinoid receptors (CB1 and CB2) agonists including tetrahydrocannabinol (THC) and cannabidiol (CBD).

The combined use of THC and CBD confers greater benefits, as CBD enhances the effects of THC and reduces its psychotropic activity. We assessed the relationship between the expression levels of CB1 and CB2 to the clinical features of a cohort of patients with NSCLC, and the effect of THC and CBD (individually and in combination) on proliferation, EMT and migration in vitro in A549, H460 and H1792 lung cancer cell lines.

METHODS:

Expression levels of CB1, CB2, EGFR, CDH1, CDH2 and VIM were evaluated by quantitative reverse transcription-polymerase chain reaction. THC and CBD (10-100 μM), individually or in combination (1:1 ratio), were used for in vitro assays. Cell proliferation was determined by BrdU incorporation assay. Morphological changes in the cells were visualized by phase-contrast and fluorescence microscopy. Migration was studied by scratch recolonization induced by 20 ng/ml epidermal growth factor (EGF).

RESULTS:

The tumor samples were classified according to the level of expression of CB1, CB2, or both. Patients with high expression levels of CB1, CB2, and CB1/CB2 showed increased survival reaching significance for CB1 and CB1/CB2 (p = 0.035 and 0.025, respectively).

Both cannabinoid agonists inhibited the proliferation and expression of EGFR in lung cancer cells, and CBD potentiated the effect of THC. THC and CBD alone or in combination restored the epithelial phenotype, as evidenced by increased expression of CDH1 and reduced expression of CDH2 and VIM, as well as by fluorescence analysis of cellular cytoskeleton.

Finally, both cannabinoids reduced the in vitro migration of the three lung cancer cells lines used.

CONCLUSIONS:

The expression levels of CB1 and CB2 have a potential use as markers of survival in patients with NSCLC. THC and CBD inhibited the proliferation and expression of EGFR in the lung cancer cells studied. Finally, the THC/CBD combination restored the epithelial phenotype in vitro.”

https://www.ncbi.nlm.nih.gov/pubmed/32049991

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228909

Cannabinoids and Terpenes as an Antibacterial and Antibiofouling Promotor for PES Water Filtration Membranes.

molecules-logo“Plant phytochemicals have potential decontaminating properties, however, their role in the amelioration of hydrophobic water filtration membranes have not been elucidated yet.

In this work, phytochemicals (i.e., cannabinoids (C) and terpenes (T) from C. sativa) were revealed for their antibacterial activity against different Gram-positive and Gram-negative bacteria.

The results of this study established cannabinoids and terpenes as an inexpensive solution for polyethersulfone (PES) membrane surface modification.

These hybrid membranes can be easily deployed at an industrial scale for water filtration purposes.”

https://www.ncbi.nlm.nih.gov/pubmed/32041149

https://www.mdpi.com/1420-3049/25/3/691

Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments.

Image result for frontiers in cardiovascular medicine“Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic.

Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory.

Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol.

We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/32039239

https://www.frontiersin.org/articles/10.3389/fcvm.2019.00194/full

“Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.”  https://www.ncbi.nlm.nih.gov/pubmed/25569804

Dietary intake of polyunsaturated fatty acids alleviates cognition deficits and depression-like behaviour via cannabinoid system in sleep deprivation rats.

Behavioural Brain Research“Sleep deprivation (SD) is a common feature in modern society. Prolonged sleep deprivation causes cognition deficits and depression-like behavior in the model of animal experiments.

Endocannabinoid system are key modulators of synaptic function, which were related to memory and mood. Although the underlying mechanism remains unknown, several studies indicated the benefits of polyunsaturated fatty acids (PUFAs, linolenic acid, 39.7%; linoleic acid, 28%; and oleic acid, 22%) on brain function through the endocannabinoid system.

The present study aimed to evaluate the influence of dietary PUFAs on cognition deficits induced by sleep deprivation in Sprague Dawley rats.

The results revealed that SD led to the disorder of cognition and mood which was improved by the supplement of PUFAs.

SD significantly increased the mEPSC frequency, and decreased the protein level of cannabinoid type-1 receptors (CB1R). These changes were restored by supplement of PUFAs, which showed a similar level to the control group. Behaviour tests showed that the positive effects on repairing cognition and anxiety disorders were almost completely abolished when the CB1R receptor antagonist rimonabant was applied to the SD rats.

These findings indicated that PUFAs are a factor regulating cognition deficits and depression induced by SD via cannabinoid type-1 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/32035867

“PUFAs reduced cognition deficits and depression-like behaviours of sleep deprivation rats in the behaviour tests.”

https://www.sciencedirect.com/science/article/pii/S0166432819317218?via%3Dihub

“Hempseed oil is over 80% in polyunsaturated fatty acids (PUFAs), and is an exceptionally rich source of the two essential fatty acids (EFAs) linoleic acid (18:2 omega-6) and alpha-linolenic acid (18:3 omega-3). The omega-6 to omega-3 ratio (n6/n3) in #hempseed oil is normally between 2:1 and 3:1, which is considered to be optimal for human health.”

https://www.researchgate.net/publication/226272227_Hempseed_as_a_nutritional_resource_An_overview

Abrupt withdrawal of cannabidiol (CBD): A randomized trial.

Cover image volume 103, Issue “The rationale of this study was to assess occurrence of withdrawal symptoms induced by abrupt cessation of cannabidiol (CBD) after prolonged administration in healthy volunteers.

CONCLUSION:

In healthy volunteers, no evidence of withdrawal syndrome was found with abrupt discontinuation of short-term treatment with CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/32036242

“There was no evidence of a physical withdrawal syndrome after abrupt cessation of CBD.”

https://www.epilepsybehavior.com/article/S1525-5050(19)31116-3/fulltext

Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa” https://www.ncbi.nlm.nih.gov/pubmed/19690824

Neuroprotective effect of chronic administration of cannabidiol during the abstinence period on methamphetamine-induced impairment of recognition memory in the rats.

“Neuropsychiatric disorders, such as addiction, are associated with cognitive impairment, including learning and memory deficits.

Previous research has demonstrated that the chronic use of methamphetamine (METH) induces long-term cognitive impairment and cannabidiol (CBD), as a neuroprotectant, can reverse spatial memory deficits induced by drug abuse.

The study aimed to evaluate the effect of CBD on METH-induced memory impairment in rats chronically exposed to METH (CEM).

For the induction of CEM, animals received METH (2 mg/kg, twice/day) for 10 days. Thereafter, the effect of intracerebroventricular (ICV) administration of CBD (32 and 160 nmol) during the (10 days) abstinence period on spatial memory was evaluated using the Y-Maze test, while recognition memory was examined using the novel object recognition (NOR) test.

The results revealed a significant increase in the motor activity of METH-treated animals compared with the control group and, after the 10-day abstinence period, motor activity returned to baseline. Notably, the chronic administration of METH had impairing effects on spontaneous alternation performance and recognition memory, which was clearly observed in the NOR test.

Additionally, although the ICV administration of CBD (160 nmol) could reverse long-term memory, a lower dose (32 nmol) did not result in any significant increase in exploring the novel object during short-term memory testing.

These novel findings suggest that the chronic administration of METH induces memory impairment and presents interesting implications for the potential use of CBD in treating impairment deficits after chronic exposure to psychostimulant drugs such as METH.”

https://www.ncbi.nlm.nih.gov/pubmed/32032100

https://journals.lww.com/behaviouralpharm/Abstract/publishahead/Neuroprotective_effect_of_chronic_administration.99194.aspx

Medical Cannabis in Children.

 Logo of rmmj“The use of medical cannabis in children is rapidly growing.

While robust evidence currently exists only for pure cannabidiol (CBD) to treat specific types of refractory epilepsy, in most cases, artisanal strains of CBD-rich medical cannabis are being used to treat children with various types of refractory epilepsy or irritability associated with autism spectrum disorder (ASD).

Other common pediatric disorders that are being considered for cannabis treatment are Tourette syndrome and spasticity.

As recreational cannabis use during youth is associated with serious adverse events and medical cannabis use is believed to have a relatively high placebo effect, decisions to use medical cannabis during childhood and adolescence should be made with caution and based on evidence.

This review summarizes the current evidence for safety, tolerability, and efficacy of medical cannabis in children with epilepsy and in children with ASD. The main risks associated with use of Δ9-tetrahydrocannabinol (THC) and CBD in the pediatric population are described, as well as the debate regarding the use of whole-plant extract to retain a possible “entourage effect” as opposed to pure cannabinoids that are more standardized and reproducible.”

https://www.ncbi.nlm.nih.gov/pubmed/32017680

Medical Cannabis for Intractable Epilepsy in Childhood: A Review.

 Logo of rmmj“In recent years, cannabis has been gaining increasing interest in both the medical research and clinical fields, with regard to its therapeutic effects in various disorders. One of the major fields of interest is its role as an anticonvulsant for refractory epilepsy, especially in the pediatric population. This paper presents and discusses the current accumulated knowledge regarding artisanal cannabis and Epidiolex®, a United States Food and Drug Administration (FDA)-approved pure cannabidiol (CBD), in epilepsy management in pediatrics, by reviewing the literature and raising debate regarding further research directions.”

https://www.ncbi.nlm.nih.gov/pubmed/32017679

Uncovering the hidden antibiotic potential of Cannabis.

 Go to Volume 0, Issue ja“The spread of antimicrobial resistance continues to be a priority health concern worldwide, necessitating exploration of alternative therapies.

Cannabis sativa has long been known to contain antibacterial cannabinoids, but their potential to address antibiotic resistance has only been superficially investigated.

Here, we show that cannabinoids exhibit antibacterial activity against MRSA, inhibit its ability to form biofilms and eradicate pre-formed biofilms and stationary phase cells persistent to antibiotics.

We show that the mechanism of action of cannabigerol is through targeting the cytoplasmic membrane of Gram-positive bacteria and demonstrate in vivo efficacy of cannabigerol in a murine systemic infection model caused by MRSA.

We also show that cannabinoids are effective against Gram-negative organisms whose outer membrane is permeabilized, where cannabigerol acts on the inner membrane.

Finally, we demonstrate that cannabinoids work in combination with polymyxin B against multi-drug resistant Gram-negative pathogens, revealing the broad-spectrum therapeutic potential for cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32017534

https://pubs.acs.org/doi/10.1021/acsinfecdis.9b00419

Insulinotropic and antidiabetic effects of β-caryophyllene with l-arginine in type 2 diabetic rats.

Journal of Food Biochemistry banner“Beta-caryophyllene (BCP) is a flavoring agent, whereas l-arginine (LA) is used as a food supplement.

They possess insulinotropic and β cell regeneration activities, respectively.

We assessed the antidiabetic potential of BCP, LA, and its combination in RIN-5F cell lines and diabetic rats.

The results indicated that the combination of BCP with LA showed a significant decrease in glucose absorption and an increase in its uptake in tissues and also an increase in insulin secretion in RIN-5F cells. The combination treatment of BCP with LA showed a significant reduction in glucose, lipid levels, and oxidative stress in pancreatic tissue when compared with the diabetic group. Furthermore, the combination of BCP with LA normalized glucose tolerance and pancreatic cell damage in diabetic rats.

In conclusion, the combinational treatment showed significant potentials in the treatment of type 2 diabetes mellitus.

PRACTICAL APPLICATIONS:

Type 2 diabetes mellitus is the most prevalent chronic metabolic disorder affecting a large population.

Beta-caryophyllene is a CB2 receptor agonist shown to have insulinotropic activity.

l-Arginine is a food supplement that possesses beta-cell regeneration property.

The combination of BCP with LA could work as a potential therapeutic intervention, considering the individual pharmacological activities of each.

We evaluated the antidiabetic activity of the combination of BCP with LA in diabetic rats using ex vivo and in vitro experimentations.

Results from the study revealed that the combination of BCP with LA showed a significant (p < .001) reduction in glucose and lipid levels as compared to individual treatment. In vitro study also supports the diabetic potential of the combination of BCP with LA in the glucose-induced insulin secretion in RIN-5F cell lines.

The study indicates a therapeutic approach to treat T2DM by BCP and LA combination as food and dietary supplement.”

https://www.ncbi.nlm.nih.gov/pubmed/31997410

https://onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.13156

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142