Cannabidiol differentially regulates basal and LPS-induced inflammatory responses in macrophages, lung epithelial cells, and fibroblasts.

Toxicology and Applied Pharmacology“Cannabidiol (CBD) containing products are available in a plethora of flavors including oral, sublingual, and inhalable forms. Immunotoxicological effects of CBD containing liquids were assessed by hypothesizing that CBD regulates oxidative stress and lipopolysaccharide (LPS) induced inflammatory responses in macrophages, epithelial cells, and fibroblasts.

RESULTS:

CBD showed differential effects on IL-8 and MCP-1, and acellular and cellular ROS levels. CBD significantly attenuated LPS-induced NF-κB activity and IL-8 and MCP-1 release from macrophages. Cytokine array data depicted a differential cytokine response due to CBD. Inflammatory mediators, IL-8, serpin E1, CXCL1, IL-6, MIF, IFN-γ, MCP-1, RANTES, and TNF-α were induced, whereas MCP-1/CCL2, CCL5, eotaxin, IL-1ra, and IL-2 were reduced. CBD and dexamethasone treatments reduced the IL-8 level induced by LPS when the cells were treated individually, but showed antagonistic effects when used in combination via MCPIP (monocytic chemotactic protein-induced protein).

CONCLUSION:

CBD differentially regulated basal pro-inflammatory response and attenuated both LPS-induced cytokine release and NF-κB activity in monocytes, similar to dexamethasone. Thus, CBD has a differential inflammatory response and acts as an anti-inflammatory agent in pro-inflammatory conditions but acts as an antagonist with steroids, overriding the anti-inflammatory potential of steroids when used in combination.”

https://www.ncbi.nlm.nih.gov/pubmed/31437494

https://www.sciencedirect.com/science/article/pii/S0041008X19303217?via%3Dihub

Cannabidiol attenuates the rewarding effects of cocaine in rats by CB2, 5-TH1A and TRPV1 receptor mechanisms.

Neuropharmacology“Cocaine abuse continues to be a serious health problem worldwide. Despite intense research there is currently no FDA-approved medication to treat cocaine use disorder. The recent search has been focused on agents targeting primarily the dopamine system, while limited success has been achieved at the clinical level.

Cannabidiol (CBD) is a U.S. FDA-approved cannabinoid for the treatment of epilepsy and recently was reported to have therapeutic potential for other disorders. Here we systemically evaluated its potential utility for the treatment of cocaine addiction and explored the underlying receptor mechanisms in experimental animals.

These findings suggest that CBD may have certain therapeutic utility by blunting the acute rewarding effects of cocaine via a DA-dependent mechanism.”

https://www.ncbi.nlm.nih.gov/pubmed/31437433

https://www.sciencedirect.com/science/article/pii/S0028390819302990?via%3Dihub

The effectiveness of self-directed medical cannabis treatment for pain

Complementary Therapies in Medicine“The prior medical literature offers little guidance as to how pain relief and side effect manifestation may vary across commonly used and commercially available cannabis product types. We used the largest dataset in the United States of real-time responses to and side effect reporting from patient-directed cannabis consumption sessions for the treatment of pain under naturalistic conditions in order to identify how cannabis affects momentary pain intensity levels and which product characteristics are the best predictors of therapeutic pain relief.

Between 06/06/2016 and 10/24/2018, 2987 people used the ReleafApp to record 20,513 cannabis administration measuring cannabis’ effects on momentary pain intensity levels across five pain categories: musculoskeletal, gastrointestinal, nerve, headache-related, or non-specified pain. The average pain reduction was –3.10 points on a 0–10 visual analogue scale (SD = 2.16, d = 1.55, p < .001).

Whole Cannabis flower was associated with greater pain relief than were other types of products, and higher tetrahydrocannabinol (THC) levels were the strongest predictors of analgesia and side effects prevalence across the five pain categories. In contrast, cannabidiol (CBD) levels generally were not associated with pain relief except for a negative association between CBD and relief from gastrointestinal and non-specified pain.

These findings suggest benefits from patient-directed, cannabis therapy as a mid-level analgesic treatment; however, effectiveness and side effect manifestation vary with the characteristics of the product used.

The results suggest that Cannabis flower with moderate to high levels of tetrahydrocannabinol is an effective mid-level analgesic.”

https://www.ncbi.nlm.nih.gov/pubmed/31519268

https://www.sciencedirect.com/science/article/abs/pii/S0965229919308040

“UNM study confirms cannabis flower is an effective mid-level analgesic medication for pain treatment. Cannabis likely has numerous constituents that possess analgesic properties beyond THC, including terpenes and flavonoids, which likely act synergistically for people that use whole dried cannabis flower, Cannabis offers the average patient an effective alternative to using opioids for general use in the treatment of pain with very minimal negative side effects for most people.”  https://news.unm.edu/news/unm-study-confirms-cannabis-flower-is-an-effective-mid-level-analgesic-medication-for-pain-treatment

Cannabidiol and the Remainder of the Plant Extract Modulate the Effects of Δ9-Tetrahydrocannabinol on Fear Memory Reconsolidation.

Image result for frontiers in behavioral neuroscience “Δ9-Tetrahydrocannabinol (THC, a CB1 receptor agonist) and Cannabidiol (CBD, a non-competitive antagonist of endogenous CB1 and CB2 ligands) are two primary components of Cannabis species, and may modulate fear learning in mammals.

The CB1 receptor is widely distributed throughout the cortex and some limbic regions typically associated with fear learning. Humans with posttraumatic disorder (PTSD) have widespread upregulation of CB1 receptor density and reduced availability of endogenous cannabinoid anandamide, suggesting a role for the endocannabinoid system in PTSD.

Pharmacological blockade of memory reconsolidation following recall of a conditioned response modulates the expression of learned fear and may represent a viable target for the development of new treatments for PTSD.

In this study, we focused on assessing the impact of the key compounds of the marijuana plant both singly and, more importantly, in concert on attenuation of learned fear. Specifically, we assessed the impact of THC, CBD, and/or the remaining plant materials (post-extraction; background material), on reconsolidation of learned fear.

Results: CBD alone, but not THC alone, significantly attenuated fear memory reconsolidation when administered immediately after recall. The effect persisted for at least 7 days. A combination of CBD and THC also attenuated the fear response. Plant BM also significantly attenuated reconsolidation of learned fear both on its own and in combination with THC and CBD. Finally, THC attenuated reconsolidation of learned fear only when co-administered with CBD or plant BM.

Conclusion: CBD may provide a novel treatment strategy for targeting fear-memories. Furthermore, plant BM also significantly attenuated the fear response. However, whereas THC alone had no significant effects, its effects were modulated by the addition of other compounds. Future research should investigate some of the other components present in the plant BM (such as terpenes) for their effects alone, or in combination with isolated pure cannabinoids, on fear learning.”

https://www.ncbi.nlm.nih.gov/pubmed/31417379

https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00174/full

Opportunities for cannabis in supportive care in cancer.

 Related image“Cannabis has the potential to modulate some of the most common and debilitating symptoms of cancer and its treatments, including nausea and vomiting, loss of appetite, and pain.

However, the dearth of scientific evidence for the effectiveness of cannabis in treating these symptoms in patients with cancer poses a challenge to clinicians in discussing this option with their patients. A review was performed using keywords related to cannabis and important symptoms of cancer and its treatments.

Literature was qualitatively reviewed from preclinical models to clinical trials in the fields of cancer, human immunodeficiency virus (HIV), multiple sclerosis, inflammatory bowel disease, post-traumatic stress disorder (PTSD), and others, to prudently inform the use of cannabis in supportive and palliative care in cancer.

There is a reasonable amount of evidence to consider cannabis for nausea and vomiting, loss of appetite, and pain as a supplement to first-line treatments. There is promising evidence to treat chemotherapy-induced peripheral neuropathy, gastrointestinal distress, and sleep disorders, but the literature is thus far too limited to recommend cannabis for these symptoms.

Scant, yet more controversial, evidence exists in regard to cannabis for cancer- and treatment-related cognitive impairment, anxiety, depression, and fatigue. Adverse effects of cannabis are documented but tend to be mild.

Cannabis has multifaceted potential bioactive benefits that appear to outweigh its risks in many situations. Further research is required to elucidate its mechanisms of action and efficacy and to optimize cannabis preparations and doses for specific populations affected by cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/31413731

https://journals.sagepub.com/doi/10.1177/1758835919866362

Emerging role of cannabinoids and synthetic cannabinoid receptor 1/cannabinoid receptor 2 receptor agonists in cancer treatment and chemotherapy-associated cancer management

Journal of Cancer Research and Therapeutics“Cannabis was extensively utilized for its medicinal properties till the 19th century. A steep decline in its medicinal usage was observed later due to its emergence as an illegal recreational drug.

Advances in technology and scientific findings led to the discovery of delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound of cannabis, that further led to the discovery of endogenous cannabinoids system consisting of G-protein-coupled receptors – cannabinoid receptor 1 and cannabinoid receptor 2 along with their ligands, mainly anandamide and 2-arachidonoylglycerol.  Endocannabinoid (EC) is shown to be a modulator not only for physiological functions but also for the immune system, endocrine network, and central nervous system.

Medicinal research and meta-data analysis over the last few decades have shown a significant potential for both THC and cannabidiol (CBD) to exert palliative effects. People suffering from many forms of advanced stages of cancers undergo chemotherapy-induced nausea and vomiting followed by severe and chronic neuropathic pain and weight loss.

THC and CBD exhibit effective analgesic, anxiolytic, and appetite-stimulating effect on patients suffering from cancer. Drugs currently available in the market to treat such chemotherapy-induced cancer-related ailments are Sativex (GW Pharmaceutical), Dronabinol (Unimed Pharmaceuticals), and Nabilone (Valeant Pharmaceuticals).

Apart from exerting palliative effects, THC also shows promising role in the treatment of cancer growth, neurodegenerative diseases (multiple sclerosis and Alzheimer’s disease), and alcohol addiction and hence should be exploited for potential benefits.

The current review discusses the nature and role of CB receptors, specific applications of cannabinoids, and major studies that have assessed the role of cannabinoids in cancer management.

Specific targeting of cannabinoid receptors can be used to manage severe side effects during chemotherapy, palliative care, and overall cancer management. Furthermore, research evidences on cannabinoids have suggested tumor inhibiting and suppressing properties which warrant reconsidering legality of the substance.

Studies on CB1 and CB2 receptors, in case of cancers, have demonstrated the psychoactive constituents of cannabinoids to be potent against tumor growth.

Interestingly, studies have also shown that activation of CB1 and CB2 cannabinoid receptors by their respective synthetic agonists tends to limit human cancer cell growth, suggesting the role of the endocannabinoid system as a novel target for treatment of cancers.

Further explorations are required to exploit cannabinoids for an effective cancer management.”

http://www.cancerjournal.net/preprintarticle.asp?id=263538

“Could Cannabis Kill Cancer Cells? A New Study Looks Promising”  https://www.portlandmercury.com/blogtown/2019/08/15/26977361/could-cannabis-kill-cancer-cells-a-new-study-looks-promising

“Study Reviews How Marijuana Compounds Inhibit Tumor Growth And Kill Cancer Cells” https://www.marijuanamoment.net/study-reviews-how-marijuana-compounds-inhibit-tumor-growth-and-kill-cancer-cells/

Urgent need for “EBMM” in pediatric oncology: Evidence based medical marijuana.

Publication Cover“Marijuana has been used by many different civilizations for numerous different purposes, including its use for medical indications. Recently, there has been significant media coverage of the efficacy of medical marijuana in the treatment of seizures in children with Dravet syndrome, and this has led many to search for other possible pediatric indications for cannabinoids, including many different indications in pediatric cancer. However, there is very little evidence on safety or efficacy of cannabinoids in children being treated with cancer. This commentary accompanies a recent paper by a group in Israel who have published their experience of medical marijuana in 50 children and adolescents with cancer, showing excellent satisfaction and better symptom control, and without significant adverse drug reactions. This study from Israel is an excellent first step, but prospective well-designed trials of medical marijuana in pediatric oncology are urgently needed.”

Heavy Cannabis Use Associated With Reduction in Activated and Inflammatory Immune Cell Frequencies in Antiretroviral Therapy-Treated Human Immunodeficiency Virus-Infected Individuals.

Issue Cover“Heavy cannabis users had decreased frequencies of human leukocyte antigen (HLA)-DR+CD38+CD4+ and CD8+ T-cell frequencies, compared to frequencies of these cells in non-cannabis-using individuals.

Heavy cannabis users had decreased frequencies of intermediate and nonclassical monocyte subsets, as well as decreased frequencies of interleukin 23- and tumor necrosis factor-α-producing antigen-presenting cells.

CONCLUSIONS:

While the clinical implications are unclear, our findings suggest that cannabis use is associated with a potentially beneficial reduction in systemic inflammation and immune activation in the context of antiretroviral-treated HIV infection.”

https://www.ncbi.nlm.nih.gov/pubmed/29471387

“We found that heavy cannabis use was associated with decreased frequencies of activated T cells and inflammatory antigen-presenting cell (APC) subsets, suggesting a potential immunologic benefit of cannabinoids through decreased immune activation in HIV-infected individuals.

In summary, our work demonstrates that heavy cannabis use is associated with lower markers of inflammation and immune activation in HIV-infected, ART-treated individuals.

These findings have clinical implications, as cannabinoids may have an immunological benefit and nonpsychoactive cannabis derivatives could be investigated as novel therapeutics to be used in conjunction with ART to aid in reduction of persistent inflammation.”

https://academic.oup.com/cid/article/66/12/1872/4869752

“Cannabinoids for the treatment of inflammation.” http://www.ncbi.nlm.nih.gov/pubmed/17520866

Cannabinoids and inflammation: Implications for People Living with HIV.

Image result for wolters kluwer “Thanks to the success of modern antiretroviral therapy (ART), people living with HIV (PLWH) have life expectancies which approach that of persons in the general population. However, despite the ability of ART to suppress viral replication, PLWH have high levels of chronic systemic inflammation which drives the development of comorbidities such as cardiovascular disease, diabetes and non-AIDS associated malignancies.

Historically, cannabis has played an important role in alleviating many symptoms experienced by persons with advanced HIV infection in the pre-ART era and continues to be used by many PLWH in the ART era, though for different reasons.

Δ-tetrahydrocannabinol (Δ-THC) and cannabidiol (CBD) are the phytocannabinoids which have received most attention for their medicinal properties. Due to their ability to suppress lymphocyte proliferation and inflammatory cytokine production, there is interest in examining their therapeutic potential as immunomodulators.

CB2 receptor activation has been shown in vitro to reduce CD4 T-cell infection by CXCR4-tropic HIV and to reduce HIV replication.

Studies involving SIV-infected macaques have shown that Δ-THC can reduce morbidity and mortality and has favourable effects on the gut mucosal immunity. Furthermore, ΔTHC administration was associated with reduced lymph node fibrosis and diminished levels of SIV proviral DNA in spleens of rhesus macaques compared with placebo-treated macaques.

In humans, cannabis use does not induce a reduction in peripheral CD4 T-cell count or loss of HIV virological control in cross-sectional studies. Rather, cannabis use in ART-treated PLWH was associated with decreased levels of T-cell activation, inflammatory monocytes and pro-inflammatory cytokines secretion, all of which are related to HIV disease progression and co-morbidities.

Randomized clinical trials should provide further insights into the ability of cannabis and cannabinoid-based medicines to attenuate HIV-associated inflammation. In turn, these findings may provide a novel means to reduce morbidity and mortality in PLWH as adjunctive agents to ART.”

https://www.ncbi.nlm.nih.gov/pubmed/31408029

https://insights.ovid.com/crossref?an=00002030-900000000-96855

Terpenes in Cannabis sativa – From plant genome to humans.

Plant Science“Cannabis sativa (cannabis) produces a resin that is valued for its psychoactive and medicinal properties.

Despite being the foundation of a multi-billion dollar global industry, scientific knowledge and research on cannabis is lagging behind compared to other high-value crops. This is largely due to legal restrictions that have prevented many researchers from studying cannabis, its products, and their effects in humans.

Cannabis resin contains hundreds of different terpene and cannabinoid metabolites.

Our understanding of the genomic and biosynthetic systems of these metabolites in cannabis, and the factors that affect their variability, is rudimentary. As a consequence, there is concern about lack of consistency with regard to the terpene and cannabinoid composition of different cannabis ‘strains’.

Likewise, claims of some of the medicinal properties attributed to cannabis metabolites would benefit from thorough scientific validation.”

https://www.ncbi.nlm.nih.gov/pubmed/31084880

https://www.sciencedirect.com/science/article/pii/S0168945219301190?via%3Dihub