The ameliorative effect of hemp seed hexane extracts on the Propionibacterium acnes-induced inflammation and lipogenesis in sebocytes.

“In this study, we investigated the anti-microbial, anti-inflammatory, and anti-lipogenic effects of hemp (Cannabis sativa L.) seed hexane extracts, focusing on the Propionibacterium acnes-triggered inflammation and lipogenesis.

Hemp seed hexane extracts (HSHE) showed anti-microbial activity against P. acnes.

The expression of iNOS, COX-2, and the subsequent production of nitric oxide and prostaglandin increased after infection of P. acnes in HaCaT cells, however, upon treating with HSHE, their expressions were reduced. P. acnes-induced expressions of IL-1β and IL-8 were also reduced.

HSHE exerted anti-inflammatory effects by regulating NF-κB and MAPKs signaling and blunting the translocation of p-NF-κB to the nucleus in P. acnes-stimulated HaCaT cells. Moreover, P. acnes-induced phosphorylation of ERK and JNK, and their downstream targets c-Fos and c-Jun, was also inhibited by HSHE. In addition, the transactivation of AP-1 induced by P. acnes infection was also downregulated by HSHE.

Notably, HSHE regulated inflammation and lipid biosynthesis via regulating AMPK and AKT/FoxO1 signaling in IGF-1-induced inflammation and lipogenesis of sebocytes. In addition, HSHE inhibited 5-lipoxygenase level and P. acnes-induced MMP-9 activity, and promoted collagen biosynthesis in vitro.

Thus, HSHE could be utilized to treat acne vulgaris, through its anti-microbial, anti-inflammatory, anti-lipogenic, and collagen-promoting properties.”

Cannabidiol restores differentiation capacity of LPS exposed adipose tissue mesenchymal stromal cells.

Experimental Cell Research

“Multipotent mesenchymal stromal cells (MSCs) support wound healing processes. These cells express toll-like receptors (TLRs). TLRs perform important key functions when the immune system is confronted with danger signals. TLR ligation by lipopolysaccharides (LPS) activates MSCs and induces intracellular signaling cascades, which affect their differentiation profile, increase the release of inflammatory cytokines and the production of reactive oxygen species. Continuing exposure to LPS triggers prolonged inflammatory reactions, which may lead to deleterious conditions, e.g. non-healing wounds.

Cannabidiol (CBD) exerts anti-inflammatory processes through cannabinoid receptor dependent and independent mechanisms. In the present study, we examined whether CBD could influence the inflammatory MSC phenotype.

Exposure to LPS increased the release of IL-6, as well as other soluble factors, and elevated levels of oxidized macromolecules found in cell homogenisates. While the amount of IL-6 was unaffected, co-treatment with CBD reduced the oxidative stress acting on the cells. LPS inhibited adipogenic as well as chondrogenic differentiation, which was attenuated by CBD treatment. In the case of adipogenesis, the disinhibitory effect probably depended on CBD interaction with the peroxisome proliferator-activated receptor-γ.

CBD could exert mild immunosuppressive properties on MSCs, while it most effectively acted anti-oxidatively and by restoring the differentiation capacity upon LPS treatment.” https://www.ncbi.nlm.nih.gov/pubmed/30036540

“Cannabidiol (CBD) reduces oxidative stress and restores adipogenesis and chondrogenesis of mesenchymal stromal cells (MSCs) upon lipopolysaccharides (LPS)  exposure.” https://linkinghub.elsevier.com/retrieve/pii/S0014482718304312

Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1–CB2 Heteroreceptor Complexes

Image result for frontiers in pharmacology

“Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties.

The aim of this work was to investigate in parallel the binding properties of CBG to cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors and the effects of the compound on agonist activation of those receptors and of CB1–CB2 heteroreceptor complexes.

The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling.

In conclusion, the results presented in this study reveal that the non-psychotropic phytocannabinoid, CBG, may exert beneficial actions with therapeutic potential via cannabinoid receptors.”

https://www.frontiersin.org/articles/10.3389/fphar.2018.00632/full

“International Multi-Centre Collaboration Reveals that Cannabigerol Acts Directly on Cannabinoid Receptors CB1 and CB2” https://www.prnewswire.com/news-releases/international-multi-centre-collaboration-reveals-that-cannabigerol-acts-directly-on-cannabinoid-receptors-cb1-and-cb2-300671024.html

The effect of hemp seed and linseed addition on the quality of liver pâtés.

Image result for Acta Scientiarum Polonorum Technologia Alimentaria

“Liver pâtés are popular all over the world, but they usually contain high amounts of animal fats. It may be beneficial to improve their dietetic value by decreasing the saturated fatty acid content, while maintaining their sensory quality. One way to do this is to add ingredients which are rich in polyunsaturated fatty acids, such as hemp seed or linseed. Hemp seeds are valuable because of their fat and protein content and linseed is known for its high α-linolenic fatty acid (ALA) content. Both are good sources of fiber.

RESULTS:

The addition of hemp and linseed increased the fat content. The fatty acid profile improved signifi- cantly. There were more polyunsaturated fatty acids and the n-6 to n-3 ratio was reduced in both products containing oil seeds compared to the control sample, which is important from the health point of view. The color parameters were not changed. The hardness, chewiness and adhesiveness increased in products contain- ing oil seeds. Those products received higher scores in sensory analysis.

CONCLUSIONS:

The quality of the pâtés with added oil seed is comparable to or better than the traditional ones. The products with both hemp and linseed can be treated as a good source of n-3 fatty acids. The amount of ALA is high enough to label the product as a source of n-3 fatty acids.”

Quality Traits of “Cannabidiol Oils”: Cannabinoids Content, Terpene Fingerprint and Oxidation Stability of European Commercially Available Preparations.

molecules-logo

“Cannabidiol (CBD)-based oil preparations are becoming extremely popular, as CBD has been shown to have beneficial effects on human health.

CBD-based oil preparations are not unambiguously regulated under the European legislation, as CBD is not considered as a controlled substance. This means that companies can produce and distribute CBD products derived from non-psychoactive hemp varieties, providing an easy access to this extremely advantageous cannabinoid.

This leaves consumers with no legal quality guarantees. The objective of this project was to assess the quality of 14 CBD oils commercially available in European countries. An in-depth chemical profiling of cannabinoids, terpenes and oxidation products was conducted by means of GC-MS and HPLC-Q-Exactive-Orbitrap-MS in order to improve knowledge regarding the characteristics of CBD oils. Nine out of the 14 samples studied had concentrations that differed notably from the declared amount, while the remaining five preserved CBD within optimal limits.

Our results highlighted a wide variability in cannabinoids profile that justifies the need for strict and standardized regulations. In addition, the terpenes fingerprint may serve as an indicator of the quality of hemp varieties, while the lipid oxidation products profile could contribute in evaluation of the stability of the oil used as milieu for CBD rich extracts.”

Review of the neurological benefits of phytocannabinoids.

Logo of sni

“Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS.

METHODS:

In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts.

RESULTS:

Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids.

CONCLUSIONS:

In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.”

https://www.ncbi.nlm.nih.gov/pubmed/29770251

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938896/

Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts.

 Food Chemistry

“In this study the antioxidant effect of Cannabis sativa L. seeds and sprouts (3 and 5 days of germination) was evaluated.

Total polyphenols, flavonoids and flavonols content, when expressed on dry weight basis, were highest in sprouts; ORAC and DPPH (in vitro assays), CAA-RBC (cellular antioxidant activity in red blood cells) and hemolysis test (ex vivo assays) evidenced a good antioxidant activity higher in sprouts than in seeds. Untargeted analysis by high resolution mass spectrometry in negative ion mode allowed the identification of main polyphenols (caffeoyltyramine, cannabisin A, B, C) in seeds and of ω-6 (linoleic acid) in sprouts. Antimutagenic effect of seeds and sprouts extracts evidenced a significant decrease of mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae D7 strain.

In conclusion our results show that C. sativa seeds and sprouts exert beneficial effects on yeast and human cells and should be further investigated as a potential functional food.”

https://www.ncbi.nlm.nih.gov/pubmed/29751921

https://www.sciencedirect.com/science/article/pii/S0308814618307180?via%3Dihub

[The impact of cannabinoids on the endocrine system].

 

Related image

“Cannabinoids are naturally occurring compounds, derivatives of Indian hemp, in which tetrahydrocannabinol (THC) is the most important. Marijuana, hashish and hash oil are among those most commonly used in the group.

Cannabinoids (marjhuana and hashish) have been used throughout recorded history as effective drugs in treating various diseases and conditions such as: malaria, hypertension, constipation, bronchial asthma, rheumatic pains, and as natural pain relief in labour and joint pains.

Marijuana acts through cannabinoid receptors CB 1 and CB2. Both receptors inhibit cAMP accummulation (through Gi/o proteins) and stimulate mitrogen- activated protein kinase. CB1 rceptors are located in CNS and in adipose tissue, digestive tract, muscles, heart, lungs, liver, kidneys, gonads, prostate gland and other peripheral tissues. CB2 cannabinoid receptors are located in the peripheral nervous system (at the ends of peripheral nerves), and on the surfaces of the cells of the immunological system.

The discovery of endogenous cannabinoids has contributed to a better understanding of their role in the regulation of the intake of food, energetic homeostasis and their significant influence on the endocrine system.”

Hemp shows potential for treating ovarian cancer

“Researchers demonstrate hemp’s ability to slow cancer growth and uncover mechanism for its cancer-fighting ability.

Results from some of the first studies to examine hemp’s ability to fight cancer show that it might one day be useful as plant-based treatment for ovarian cancer. Hemp is part of the same cannabis family as marijuana but doesn’t have any psychoactive properties or cause addiction.

“Hemp, like marijuana, contains therapeutically valuable components such as cannabidiol, cannabinol, and tetrahydrocannabinol,”

“Our findings from this research as well as prior research show that KY hemp slows ovarian cancer comparable to or even better than the current ovarian cancer drug Cisplatin,” said Turner. “Since Cisplatin exhibits high toxicity, we anticipate that hemp would carry less side effects.”

https://www.sciencedaily.com/releases/2018/04/180423155046.htm

“Hemp Shows Potential for Treating Ovarian Cancer”  https://www.eurekalert.org/multimedia/pub/167927.php

“Hemp Can Fight Cancer Too, Reveal Scientists in New Cannabis Study”  https://www.inverse.com/article/44039-cancer-hemp-plant-based-treatment

“Studies show hemp’s potential for treating ovarian cancer”         https://www.news-medical.net/news/20180424/Studies-show-hemps-potential-for-treating-ovarian-cancer.aspx

“Hemp shows potential for treating ovarian cancer”  https://www.europeanpharmaceuticalreview.com/news/75103/hemp-treating-ovarian-cancer/

“Hemp portrays possibility for curing ovarian cancer”  https://ebuzzcommunity.com/2018/04/hemp-portrays-possibility-for-curing-ovarian-cancer/

“Hemp Extract Inhibits Growth Of Ovarian Cancer, Research Finds”  https://thefreshtoast.com/rx/hemp-extract-inhibits-growth-of-ovarian-cancer-research-finds/

Cannabis Essential Oil: A Preliminary Study for the Evaluation of the Brain Effects.

Image result for Evid Based Complement Alternat Med

“We examined the effects of essential oil from legal (THC <0.2% w/v) hemp variety on the nervous system in 5 healthy volunteers. GC/EIMS and GC/FID analysis of the EO showed that the main components were myrcene and β-caryophyllene.

The experiment consisted of measuring autonomic nervous system (ANS) parameters; evaluations of the mood state; and electroencephalography (EEG) recording before treatment, during treatment, and after hemp inhalation periods as compared with control conditions. The results revealed decreased diastolic blood pressure, increased heart rate, and significant increased skin temperature.

The subjects described themselves as more energetic, relaxed, and calm.

The analysis EEG showed a significant increase in the mean frequency of alpha (8-13 Hz) and significant decreased mean frequency and relative power of beta 2 (18,5-30 Hz) waves. Moreover, an increased power, relative power, and amplitude of theta (4-8 Hz) and alpha brain waves activities and an increment in the delta wave (0,5-4 Hz) power and relative power was recorded in the posterior region of the brain.

These results suggest that the brain wave activity and ANS are affected by the inhalation of the EO of Cannabis sativa suggesting a neuromodular activity in cases of stress, depression, and anxiety.”