Smoking Marijuana Eases Chronic Neuropathic Pain.

“Smoking cannabis reduces chronic neuropathic pain and also improves sleep, according to new research published today in the Canadian Medical Association Journal.

A single inhalation of 25 mg of 9.4% tetrahydrocannabinol herbal cannabis 3 times a day for 5 days was sufficient to achieve these outcomes, lead study author Mark A. Ware, MBBS, from McGill University Health Center, Montreal, Canada, told Medscape Medical News in an interview.

“Patients have been reporting that cannabis helps control their pain, and they have been saying so for a long time,” Dr. Ware said. “At the time that we had secured the funding and began the trial, there had been no clinical trials that had established this or investigated it.”

In addition, a large body of scientific knowledge is emerging abound the role of cannabinoid receptors and cannabinoid ligands in the human body, providing a potential scientific explanation as to why cannabinoids would be analgesic, he added. “So the 2 main supports came together, and in Canada at the time, there was an environment where we were able to secure funding sufficient for studies of this.”

Posttraumatic and Postsurgical Neuropathy

The study included 21 individuals older than 18 years (mean age, 45.4 years) with posttraumatic or postsurgical neuropathic pain lasting for at least 3 months. They were randomly assigned to receive cannabis at 4 potencies — 0%, 2.5%, 6%, and 9.4% tetrahydrocannabinol — during 4 periods in a crossover design. Each period lasted 14 days and began with 5 days of cannabis use followed by a 9-day washout period.

The cannabis doses were delivered in a single smoked inhalation using a titanium pipe. Patients self-administered the first dose of each period under supervision and were instructed to inhale for 5 seconds while the cannabis was lit, hold the smoke in their lungs for 10 seconds, and then exhale. They self-administered the remaining doses for each period at home.

The participants were allowed to continue their routine medications, and the use of acetaminophen as breakthrough analgesia was also permitted.

Pain intensity was measured using an 11-item numeric rating scale that used “no pain” and “worst pain possible” as anchors.

The study found that the higher dose of cannabis was the most efficient in reducing pain. The average daily pain intensity was 5.4 with the 9.4% tetrahydrocannabinol cannabis dose compared with 6.1 with the 0% or placebo dose (95% confidence interval, 0.02 – 1.4; P = .023).

In addition, participants reported significantly more drowsiness and reported getting to sleep more easily, faster, and with fewer periods of wakefulness when taking the 9.4% dose than when taking the 0% dose ( P < .05). The higher dose also improved anxiety and depression compared with the placebo dose.

Blind Held; Studies Feasible

“It was feared that participants would know right away if they were smoking cannabis because of the acute psychoactive effects of the drug, but our results do not support this,” Dr. Ware noted. “They do show that short-term placebo-controlled trials of smoked cannabis are feasible.”

He would like his study to act as a stimulus for other studies on cannabis and pain relief.

“Studies of this kind can be done. Ours was difficult to do because it was the first time we had done anything like this. We were breaking new ground with regard to regulations and so on, but it is possible. Having done it once, it’s not as difficult to do it again. So our results raise the possibility of extending the study for a longer duration, or being able to look at safety issues, and so on. It is possible to do a scientific trial with this compound. Your political views shouldn’t matter. This is just good science,” Dr. Ware said.

In a related commentary, Henry J. McQuay, DM, from Balliol College, Oxford, United Kingdom, writes that the study authors should be congratulated for tackling the question of whether cannabis helps in neuropathic pain, “particularly given that the regulatory hurdles for their trial must have been a nightmare.”

He concludes that the study “adds to the trickle of evidence that cannabis may help some of the patients who are struggling at present.””

http://www.medscape.com/viewarticle/727702

Cannabis and the brain.

Abstract

“The active compound in herbal cannabis, Delta(9)-tetrahydrocannabinol, exerts all of its known central effects through the CB(1) cannabinoid receptor. Research on cannabinoid mechanisms has been facilitated by the availability of selective antagonists acting at CB(1) receptors and the generation of CB(1) receptor knockout mice. Particularly important classes of neurons that express high levels of CB(1) receptors are GABAergic interneurons in hippocampus, amygdala and cerebral cortex, which also contain the neuropeptides cholecystokinin. Activation of CB(1) receptors leads to inhibition of the release of amino acid and monoamine neurotransmitters. The lipid derivatives anandamide and 2-arachidonylglycerol act as endogenous ligands for CB(1) receptors (endocannabinoids). They may act as retrograde synaptic mediators of the phenomena of depolarization-induced suppression of inhibition or excitation in hippocampus and cerebellum. Central effects of cannabinoids include disruption of psychomotor behaviour, short-term memory impairment, intoxication, stimulation of appetite, antinociceptive actions (particularly against pain of neuropathic origin) and anti-emetic effects. Although there are signs of mild cognitive impairment in chronic cannabis users there is little evidence that such impairments are irreversible, or that they are accompanied by drug-induced neuropathology. A proportion of regular users of cannabis develop tolerance and dependence on the drug. Some studies have linked chronic use of cannabis with an increased risk of psychiatric illness, but there is little evidence for any causal link. The potential medical applications of cannabis in the treatment of painful muscle spasms and other symptoms of multiple sclerosis are currently being tested in clinical trials. Medicines based on drugs that enhance the function of endocannabinoids may offer novel therapeutic approaches in the future.”

http://www.ncbi.nlm.nih.gov/pubmed/12764049

50 years of medicinal plant research – every progress in methodology is a progress in science.

Abstract

“Many scientific methods of analysis have been developed for the investigation of the constituents and biological activities of medicinal plants during the 50 years since the inaugural meeting of the Gesellschaft für Arzneipflanzenforschung (GA). The chromatographic (e. g., TLC, GLC, HPLC), spectroscopic (e. g., UV, IR, 1H- and 13C-NMR, MS), and biological (e. g., anticancer, anti-inflammatory, immunostimulant, antiprotozoal, CNS) techniques utilized for medicinal plant research are briefly reviewed. The contribution that advances in scientific methodology have made to our understanding of the actions of some herbal medicines (e. g., Echinacea, Ginkgo, St John’s wort, Cannabis), as well as to ethnopharmacology and biotechnology, are briefly summarized. Plants have provided many medicinal drugs in the past and remain as a potential source of novel therapeutic agents. Despite all of the powerful analytical techniques available, the majority of plant species has not been investigated chemically or biologically in any great detail and even well known medicinal plants require further clinical study.”

http://www.ncbi.nlm.nih.gov/pubmed/12865964

Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. A focus on traditional medicines and flavonoids.

Abstract

“Herbal medicine has long been used to treat neural symptoms. Although the precise mechanisms of action of herbal drugs have yet to be determined, some of them have been shown to exert anti-inflammatory and/or anti-oxidant effects in a variety of peripheral systems. Now, as increasing evidence indicates that neuroglia-derived chronic inflammatory responses play a pathological role in the central nervous system, anti-inflammatory herbal medicine and its constituents are being proved to be a potent neuroprotector against various brain pathologies. Structural diversity of medicinal herbs makes them valuable source of novel lead compounds against therapeutic targets that are newly discovered by genomics, proteomics, and high-throughput screening.”

http://www.ncbi.nlm.nih.gov/pubmed/15956812

Human studies of cannabinoids and medicinal cannabis.

Abstract

“Cannabis has been known as a medicine for several thousand years across many cultures. It reached a position of prominence within Western medicine in the nineteenth century but became mired in disrepute and legal controls early in the twentieth century. Despite unremitting world-wide suppression, recreational cannabis exploded into popular culture in the 1960s and has remained easily obtainable on the black market in most countries ever since. This ready availability has allowed many thousands of patients to rediscover the apparent power of the drug to alleviate symptoms of some of the most cruel and refractory diseases known to humankind. Pioneering clinical research in the last quarter of the twentieth century has given some support to these anecdotal reports, but the methodological challenges to human research involving a pariah drug are formidable. Studies have tended to be small, imperfectly controlled, and have often incorporated unsatisfactory synthetic cannabinoid analogues or smoked herbal material of uncertain composition and irregular bioavailability. As a result, the scientific evaluation of medicinal cannabis in humans is still in its infancy. New possibilities in human research have been opened up by the discovery of the endocannabinoid system, a rapidly expanding knowledge of cannabinoid pharmacology, and a more sympathetic political environment in several countries. More and more scientists and clinicians are becoming interested in exploring the potential of cannabis-based medicines. Future targets will extend beyond symptom relief into disease modification, and already cannabinoids seem to offer particular promise in the treatment of certain inflammatory and neurodegenerative conditions. This chapter will begin with an outline of the development and current status of legal controls pertaining to cannabis, following which the existing human research will be reviewed. Some key safety issues will then be considered, and the chapter will conclude with some suggestions as to future directions for human research.”

http://www.ncbi.nlm.nih.gov/pubmed/16596794

CB receptor ligands from plants.

Abstract

“Advances in understanding the physiology and pharmacology of the endogenous cannabinoid system have potentiated the interest of cannabinoid receptors as potential therapeutic targets. Cannabinoids have been shown to modulate a variety of immune cell functions and have therapeutic implications on central nervous system (CNS) inflammation, chronic inflammatory conditions such as arthritis, and may be therapeutically useful in treating autoimmune conditions such as multiple sclerosis. Many of these drug effects occur through cannabinoid receptor signalling mechanisms and the modulation of cytokines and other gene products. Further, endocannabinoids have been found to have many physiological and patho-physiological functions, including mood alteration and analgesia, control of energy balance, gut motility, motor and co-ordination activities, as well as alleviation of neurological, psychiatric and eating disorders. Plants offer a wide range of chemical diversity and have been a growing domain in the search for effective cannabinoid ligands. Cannabis sativa L. with the known plant cannabinoid, Delta(9-)tetrahydrocannabinol (THC) and Echinacea species with the cannabinoid (CB) receptor-binding lipophilic alkamides are the best known herbal cannabimimetics. This review focuses on the state of the art in CB ligands from plants, as well their possible therapeutic and immunomodulatory effects.”

http://www.ncbi.nlm.nih.gov/pubmed/18289087