The pro-apoptosis effects of Echinacea purpurea and Cannabis sativa extracts in human lung cancer cells through caspase-dependent pathway

 Logo of bmccmt“Considering the advantages of using medicinal herbs as supplementary treatments to sensitize conventional anti-cancer drugs, studying functional mechanisms and regulatory effects of Echinacea purpurea (as a non-cannabinoid plant) Image result for echinacea purpurea

and Cannabis sativa (as a cannabinoid plant) are timely and required.Image result for cannabis sativa

The potential effects of such herbs on lung cancer cell growth, apoptosis, cell cycle distribution, cellular reactive oxygen species (ROS) level, caspase activity and their cannabinomimetic properties on the CB2 receptor are addressed in the current study.

Results: Echinacea purpurea (EP) root extract induced a considerable decrease in A549 viable cells, showing a time and dose-dependent response. The cell toxicity of EP was accompanied by induction of early apoptosis and cell accumulation at the sub G1 phase of the cell cycle. The elevation of cellular ROS level and caspase 3 activity indicate ROS-induced caspase-dependent apoptosis following the treatment of A549 cells by EP extract. The observed effects of EP extract on A549 growth and death were abrogated following blockage of CB2 using AM630, a specific antagonist of the CB2 receptor. Increasing concentrations of Cannabis sativa (CS) induced A549 cell death in a time-dependent manner, followed by induction of early apoptosis, cell cycle arrest at sub G1 phase, elevation of ROS level, and activation of caspase 3. The CB2 blockage caused attenuation of CS effects on A549 cell death which revealed consistency with the effects of EP extract on A549 cells.

Conclusions: The pro-apoptotic effects of EP and CS extracts on A549 cells and their possible regulatory role of CB2 activity might be attributed to metabolites of both herbs. These effects deserve receiving more attention as alternative anti-cancer agents.”

https://pubmed.ncbi.nlm.nih.gov/33446187/

“Both cannabinoid receptors and naturally occurring cannabinoids, known as phytocannabinoids, have potential therapeutic applications based on their pivotal roles in regulating immunologic responses, alleviating inflammation, tumor cell proliferation, angiogenesis, invasion, and migration. Based on the findings, it can be postulated that EP and CS extracts can inhibit lung cancer cell growth and induce apoptosis and should be considered as an alternative anti-cancer agent in lung cancer.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809807/

An external file that holds a picture, illustration, etc.
Object name is 12906_2021_3204_Figa_HTML.jpg

Beta-caryophyllene enhances wound healing through multiple routes.

 Image result for plos one“Beta-caryophyllene is an odoriferous bicyclic sesquiterpene found in various herbs and spices.

Recently, it was found that beta-caryophyllene is a ligand of the cannabinoid receptor 2 (CB2). Activation of CB2 will decrease pain, a major signal for inflammatory responses.

We hypothesized that beta-caryophyllene can affect wound healing by decreasing inflammation. Here we show that cutaneous wounds of mice treated with beta-caryophyllene had enhanced re-epithelialization.

The treated tissue showed increased cell proliferation and cells treated with beta-caryophyllene showed enhanced cell migration, suggesting that the higher re-epithelialization is due to enhanced cell proliferation and cell migration. The treated tissues also had up-regulated gene expression for hair follicle bulge stem cells. Olfactory receptors were not involved in the enhanced wound healing. Transient Receptor Potential channel genes were up-regulated in the injured skin exposed to beta-caryophyllene. Interestingly, there were sex differences in the impact of beta- caryophyllene as only the injured skin of female mice had enhanced re-epithelialization after exposure to beta-caryophyllene.

Our study suggests that chemical compounds included in essential oils have the capability to improve wound healing, an effect generated by synergetic impacts of multiple pathways.”

https://www.ncbi.nlm.nih.gov/pubmed/31841509

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216104

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Antidepressant active ingredients from herbs and nutraceuticals used in TCM: pharmacological mechanisms and prospects for drug discovery.

Pharmacological Research“Depression is a widespread psychological disorder that affects up to 20% of the world’s population. Traditional Chinese medicine (TCM), with its unique curative effect in depression treatment, is gaining increasing attention as the discovery of novel antidepressant drug has become the pursuit of pharmaceutical. This article summarizes the work done on the natural products from TCM that have been reported to conceive antidepressant effects in the past two decades, which can be classified according to various mechanisms including increasing synaptic concentrations of monoamines, alleviating the hypothalamic-pituitary-adrenal (HPA) axis dysfunctions, lightening the impairment of neuroplasticity, fighting towards immune and inflammatory dysregulation. The antidepressant active ingredients identified can be generally divided into saponins, flavonoids, alkaloids, polysaccharides and others. Albiflorin, Baicalein, Berberine chloride, beta-Asarone, cannabidiol, Curcumin, Daidzein, Echinocystic acid (EA), Emodin, Ferulic acid, Gastrodin, Genistein, Ginsenoside Rb1, Ginsenoside Rg1, Ginsenoside Rg3, Hederagenin, Hesperidin, Honokiol, Hyperoside, Icariin, Isoliquiritin, Kaempferol, Liquiritin, L-theanine, Magnolol, Paeoniflorin, Piperine, Proanthocyanidin, Puerarin, Quercetin, Resveratrol (trans), Rosmarinic acid, Saikosaponin A, Senegenin, Tetrahydroxystilbene glucoside and Vanillic acid are Specified in this review. Simultaneously, chemical structures of the active ingredients with antidepressant activities are listed and their sources, models, efficacy and mechanisms are described. Chinese compound prescription and extracts that exert antidepressant effects are also introduced, which may serve as a source of inspiration for further development. In the view of present study, the antidepressant effect of certain TCMs are affirmative and encouraging. However, there are a lot of work needs to be done to evaluate the exact therapeutic effects and mechanisms of those active ingredients, specifically, to establish a unified standard for diagnosis and evaluation of curative effect.”

https://www.ncbi.nlm.nih.gov/pubmed/31706012

https://www.sciencedirect.com/science/article/abs/pii/S1043661819322601?via%3Dihub

Anti-Inflammatory Drugs and Herbs with Special Emphasis on Herbal Medicines for Countering Inflammatory Diseases and Disorders – A Review.

“Diseases with inflammatory etiopathology have increased in incidence in recent times. Drugs used for therapeutic management of such inflammatory diseases are relieving the ailment but at the same time also countering serious life-threatening consequences. Moreover, they are costly and rarely available at all places. In this context, research and development on medicinal herbs have opened a new era in the prophylactic and therapeutic management of inflammatory diseases.

OBJECTIVE:

To highlight the importance of anti-inflammatory medicine-synthetic drugs and natural herbs, their constituents, mechanism of action, benefits, side effects and future prospects. The overall aim is to provide better health services to patiens regardless of their background on equality basis.

RESULTS:

Anti-inflammatory herbs have proven beneficial by combating inflammatory responses that lead to severe abnormality in body systems. Inflammation though a protective response to infection or injury and may result in pathological outcome when aggravated or of severe degree thus needs an early intervention for proper resolution. Medicinal plants or their constituents are considered beneficial due to the properties i.e., satisfactory potency, ease of availability, cheapness, less or no side effects, safer and efficient as compared to the synthetic counterparts. These medicinal herbs contain phytoconstituents that can prevent undesirable inflammatory processes and also posses anti-inflammatory activity. Steroids, glycosides, phenolics, flavonoids, alkaloids, polysaccharides, terpenoids, cannabinoids, fatty acids are common phytoconstituents present in these plants. Different mechanisms have been explored for the anti-inflammatory action of these active ingredients. They may synergize the anti-inflammatory pathway enzymes, factors, proteins or interfere with these in the inflammatory pathway like lipooxygenases, cyclooxygenases, tumor necrosis factors, interleukins, prostaglandin, nitric oxide, mitogen-activated protein, nuclear factor, etc. Considering all the above-mentioned factors, further research from molecular to cellular level will enable a better understanding of the mechanisms. Common anti-inflammatory herbal plants are Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, Urtica dioica, Uncaria tomentosa, Vaccinium myrtillus, Olea europaea and much more. They are believed to be without side effects unlike the chemical counterparts or synthetic anti-inflammatory agents e.g. steroids, nonsteroid anti-inflammatory drugs, and immunosuppressant used for controlling and suppressing inflammatory crisis. A proper phytochemical, pharmacological and physiological evaluation will enable their safe and effective use in inflammatory conditions. Many of these anti-inflammatory drugs and herbal preparations have been patented with some under consideration.

CONCLUSION:

Natural herbs are safe, effective and better options as anti-inflammatory agents than synthetic ones. The phytoconstituents are as effective with the comparable mechanism of action as synthetic molecules. Future research should focus on molecular mechanisms of different beneficial applications of these herbal plants in various diseases. Recent patents on anti-inflammatory drugs and herbal plants have been covered which provide insight into the current status and future prospects in this field.”

https://www.ncbi.nlm.nih.gov/pubmed/29336271  http://www.eurekaselect.com/159064/article

“Cannabinoids as novel anti-inflammatory drugs”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828614/

“Cannabinoids for the treatment of inflammation.” http://www.ncbi.nlm.nih.gov/pubmed/17520866

“Cannabis-based drugs have been shown to be effective in inflammatory diseases.” https://www.ncbi.nlm.nih.gov/pubmed/29110674

http://www.thctotalhealthcare.com/tag/anti-inflammatory/

Beyond Cannabis: Plants and the Endocannabinoid System.

“Plants have been the predominant source of medicines throughout the vast majority of human history, and remain so today outside of industrialized societies.

One of the most versatile in terms of its phytochemistry is cannabis, whose investigation has led directly to the discovery of a unique and widespread homeostatic physiological regulator, the endocannabinoid system.

While it had been the conventional wisdom until recently that only cannabis harbored active agents affecting the endocannabinoid system, in recent decades the search has widened and identified numerous additional plants whose components stimulate, antagonize, or modulate different aspects of this system.

These include common foodstuffs, herbs, spices, and more exotic ingredients: kava, chocolate, black pepper, and many others that are examined in this review.”

http://www.ncbi.nlm.nih.gov/pubmed/27179600

Can medical herbs stimulate regeneration or neuroprotection and treat neuropathic pain in chemotherapy-induced peripheral neuropathy?

“Chemotherapy-induced neuropathy (CIPN) has a relevant impact on the quality of life of cancer patients. There are no curative conventional treatments, so further options have to be investigated. We conducted a systematic review in English and Chinese language databases to illuminate the role of medical herbs. 26 relevant studies on 5 single herbs, one extract, one receptor-agonist, and 8 combinations of herbs were identified focusing on the single herbs Acorus calamus rhizoma, Cannabis sativa fructus, Chamomilla matricaria, Ginkgo biloba, Salvia officinalis, Sweet bee venom, Fritillaria cirrhosae bulbus, and the herbal combinations Bu Yang Huan Wu, modified Bu Yang Huan Wu plus Liuwei Di Huang, modified Chai Hu Long Gu Mu Li Wan, Geranii herba plus Aconiti lateralis praeparata radix , Niu Che Sen Qi Wan (Goshajinkigan), Gui Zhi Jia Shu Fu Tang (Keishikajutsubuto), Huang Qi Wu Wu Tang (Ogikeishigomotsuto), and Shao Yao Gan Cao Tang (Shakuyakukanzoto). The knowledge of mechanism of action is still limited, the quality of clinical trials needs further improvement, and studies have not yielded enough evidence to establish a standard practice, but a lot of promising substances have been identified.

While CIPN has multiple mechanisms of neuronal degeneration, a combination of herbs or substances might deal with multiple targets for the aim of neuroprotection or neuroregeneration in CIPN.”

http://www.ncbi.nlm.nih.gov/pubmed/23983777

Anti-inflammatory compound from cannabis found in herbs

“A compound found in cannabis as well as in herbs such as basil and oregano could help to treat inflammatory bowel diseases and arthritis, Swiss scientists believe.”

Model of the interaction of BCP with the CB2 receptor

“(E)-beta-caryophyllene (BCP) is an aromatic sesquiterpene that has used for many years as a food additive because of its peppery flavour. The researchers now say that it interacts selectively with one of two cannabinoid receptors, CB2, blocking the chemical signals that lead to inflammation without triggering cannabis’s mood-altering effects.
 
Many cannabinoids bind to the CB2 receptor, but few target it selectively. Most also interact with CB1, which is responsible for cannabis’ psychoactive properties. CB1 is found in brain tissue, whereas CB2is found only in cells elsewhere in the body.”
 

More:http://www.rsc.org/chemistryworld/News/2008/June/24060801.asp

Endocannabinoids and obesity.

“A safe and effective antiobesity drug is needed to combat the global obesity epidemic. The discovery of cannabinoids from medicinal herbs has revealed the endocannabinoid system (ECS) in animals and humans, which regulates various physiological activities such as feeding, thermogenesis, and body weight (BW).

Although cannabinoid receptors 1 (CB1) antagonists have shown antiobesity efficacies in animal models and in the clinic, they failed to establish as a treatment due to their psychological side effects.

 Recent studies indicate that CB1 in various peripheral tissues may mediate some of the therapeutic effects of CB1 antagonists, such as improved lipid and glucose homeostasis.

 It rationalizes the development of compounds with limited brain penetration, for minimizing the side effects while retaining the therapeutic efficacies. A survey of the literature has revealed some controversies about how the ECS affects obesity. This review summarizes the research progresses and discusses some future perspectives.”

http://www.ncbi.nlm.nih.gov/pubmed/23374723

Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy.

“The use of complementary medicines, such as plant extracts, in dementia therapy varies according to the different cultural traditions. In orthodox Western medicine, contrasting with that in China and the Far East for example, pharmacological properties of traditional cognitive- or memory-enhancing plants have not been widely investigated in the context of current models of Alzheimer’s disease. An exception is Gingko biloba in which the gingkolides have antioxidant, neuroprotective and cholinergic activities relevant to Alzheimer’s disease mechanisms. The therapeutic efficacy of Ginkgo extracts in Alzheimer’s disease in placebo controlled clinical trials is reportedly similar to currently prescribed drugs such as tacrine or donepezil and, importantly, undesirable side effects of Gingko are minimal. Old European reference books, such as those on medicinal herbs, document a variety of other plants such as Salvia officinalis (sage) and Melissa officinalis (balm) with memory-improving properties, and cholinergic activities have recently been identified in extracts of these plants. Precedents for modern discovery of clinically relevant pharmacological activity in plants with long-established medicinal use include, for example, the interaction of alkaloid opioids in Papaver somniferum (opium poppy) with endogenous opiate receptors in the brain. With recent major advances in understanding the neurobiology of Alzheimer’s disease, and as yet limited efficacy of so-called rationally designed therapies, it may be timely to re-explore historical archives for new directions in drug development. This article considers not only the value of an integrative traditional and modern scientific approach to developing new treatments for dementia, but also in the understanding of disease mechanisms. Long before the current biologically-based hypothesis of cholinergic derangement in Alzheimer’ s disease emerged, plants now known to contain cholinergic antagonists were recorded for their amnesia- and dementia-inducing properties.”

http://www.ncbi.nlm.nih.gov/pubmed/10411211