Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis.

 

Image result for Neuroscience journal

“The endocannabinoid system comprises receptors (CB1 and CB2 cannabinoid receptors), enzymes (Fatty Acid Amide Hydrolase [FAAH], which synthesizes the endocannabinoid anandamide), as well as the anandamide membrane transporter (AMT).

Importantly, previous experiments have demonstrated that the endocannabinoid system modulates multiple neurobiological functions, including sleep.

For instance, SR141716A (the CB1 cannabinoid receptor antagonist) as well as URB597 (the FAAH inhibitor) increase waking in rats whereas VDM-11 (the blocker of the AMT) enhances sleep in rodents. However, no further evidence is available regarding the neurobiological role of the endocannabinoid system in the homeostatic control of sleep.

Therefore, the aim of the current experiment was to test if SR141716A, URB597 or VDM-11 would modulate the sleep rebound after sleep deprivation. Thus, these compounds were systemically injected (5, 10, 20mg/Kg; ip; separately each one) to rats after prolonged waking. We found that SR141716A and URB597 blocked in dose-dependent fashion the sleep rebound whereas animals treated with VDM-11 displayed sleep rebound during the recovery period.

Complementary, injection after sleep deprivation of either SR141716A or URB597 enhanced dose-dependently the extracellular levels of dopamine, norepinephrine, epinephrine, serotonin, as well as adenosine while VDM-11 caused a decline in contents of these molecules.

These findings suggest that SR141716A or URB597 behave as a potent stimulants since they suppressed the sleep recovery period after prolonged waking.

It can be concluded that elements of the endocannabinoid system, such as the CB1 cannabinoid receptor, FAAH and AMT, modulate the sleep homeostasis after prolonged waking.”

https://www.ncbi.nlm.nih.gov/pubmed/27746343

Mustard vesicants alter expression of the endocannabinoid system in mouse skin.

“Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation.

Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing.

Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH).

We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process.

Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin.

Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical counter measures against vesicants.”

http://www.ncbi.nlm.nih.gov/pubmed/27125198

Modulation of cellular redox homeostasis by the endocannabinoid system

“The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions.

Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types…

To conclude, there is growing appreciation that the ECS may play an important role in the regulation of cellular redox homeostasis…

Indeed, the studies highlighted in this review show that ECS function can impact upon free radical production in a number of different ways.

Crucially, given the importance of redox status in the development of numerous pathologies, these findings identify ECS components as potential therapeutic targets for the treatment of oxidative stress-related neurological, cardiovascular and metabolic disorders.”

http://rsob.royalsocietypublishing.org/content/6/4/150276

Endocannabinoid Regulation of Neuroendocrine Systems.

“The hypothalamus is a part of the brain that is critical for sustaining life through its homeostatic control and integrative regulation of the autonomic nervous system and neuroendocrine systems. Neuroendocrine function in mammals is mediated mainly through the control of pituitary hormone secretion by diverse neuroendocrine cell groups in the hypothalamus.

Cannabinoid receptors are expressed throughout the hypothalamus, and endocannabinoids have been found to exert pronounced regulatory effects on neuroendocrine function via modulation of the outputs of several neuroendocrine systems.

Here, we review the physiological regulation of neuroendocrine function by endocannabinoids, focusing on the role of endocannabinoids in the neuroendocrine regulation of the stress response, food intake, fluid homeostasis, and reproductive function.

Cannabis sativa (marijuana) has a long history of recreational and/or medicinal use dating back to ancient times. It was used as an analgesic, anesthetic, and antianxiety herb as early as 2600 B.C.

The hedonic, anxiolytic, and mood-elevating properties of cannabis have also been cited in ancient records from different cultures. However, it was not until 1964 that the psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol, was isolated and its chemical structure determined (Gaoni & Mechoulam, 1964).”

Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond.

Abstract

“A major finding–that (-)-trans-Delta(9)-tetrahydrocannabinol (Delta(9)-THC) is largely responsible for the psychotropic effects of cannabis–prompted research in the 1970s and 1980s that led to the discovery that this plant cannabinoid acts through at least two types of cannabinoid receptor, CB(1) and CB(2), and that Delta(9)-THC and other compounds that target either or both of these receptors as agonists or antagonists have important therapeutic applications. It also led to the discovery that mammalian tissues can themselves synthesize and release agonists for cannabinoid receptors, the first of these to be discovered being arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol. These ‘endocannabinoids’ are released onto their receptors in a manner that appears to maintain homeostasis within the central nervous system and sometimes either to oppose or to mediate or exacerbate the unwanted effects of certain disorders. This review provides an overview of the pharmacology of cannabinoid receptors and their ligands. It also describes actual and potential clinical uses both for cannabinoid receptor agonists and antagonists and for compounds that affect the activation of cannabinoid receptors less directly, for example by inhibiting the enzymatic hydrolysis of endocannabinoids following their release.”

http://www.ncbi.nlm.nih.gov/pubmed/18482430

Cannabis Cures – Let Me Tell You How

Together we can make medicinal use of cannabis a reality in Florida.  FLCAN

 “CANNABIS CURES – Let me tell you how – 
All vertebrates have an endocannabinoid system – it controls the other systems in the body. The endocannabinoid system is the regulator of systems in the body.


When the endocannabioid system, or ECS as it is called, does it’s job, part of that job is sending endocannabinoids to adjust the situation, what ever that may be. It adjusts every little stressor in systems of the body keeping us in balance.
When the ECS misfires, due to a lack of endogenous cannabinoids, the body’s systems can not function correctly, they are off balance. This is the cause of ailments of all sorts – from minor things like motion sickness, to major things like cancer.

Cannabis is the only natural substance that has properties equal in all ways to our body’s own endocannabinoids, the cannabinoids in cannabis. 
So the cannabinoids from the cannabis fulfill the jobs of the lacking endocannabinoids, preventing disease(s), healing ailments, aiding in digestion, and keeping all systems functioning for optimal health.

Science knows this, now you do. Tell Everyone!



Many patients need to adjust their endocannabinoid system so their body will function appropriately, only cannabis can do that. 

Google “endocannabinoid system homeostasis”. Enter those 3 words on a Google search if you “need more information”.

It’s your body, your health, tell your lawmakers to stop the manufacturing of illness by depriving humans and other living creatures of the one natural homeostasis necessity for health – the cannabis flower.”

http://jacksonville.com/opinion/blog/504830/seabourne/2012-10-20/cannabis-cures-let-me-tell-you-how

Endocannabinoids and the regulation of their levels in health and disease.

Abstract

“PURPOSE OF REVIEW:

Endocannabinoids are defined as endogenous agonists of cannabinoid receptors, that is, of the two G-protein-coupled receptors for the Cannabis psychoactive principle Delta-tetra-hydrocannabinol. Two such endogenous mediators have been most thoroughly studied so far: anandamide and 2-arachidonoylglycerol. Here we review the mechanisms for the regulation of their levels under physiological and pathological conditions, and recent findings on their role in disease.

RECENT FINDINGS:

It is becoming increasingly clear that, although both anandamide and 2-arachidonoyl-glycerol are produced and degraded ‘on demand’, the levels of these two compounds appear to be regulated in different, and sometimes even opposing, ways, often using redundant molecular mechanisms. Alterations of endocannabinoid levels have been found in both animal models of pain, neurological and neurodegenerative states, gastrointestinal disorders and inflammatory conditions, and in blood, cerebrospinal fluid and bioptic samples from patients with various diseases.

SUMMARY:

Endocannabinoid levels appear to be transiently elevated as an adaptive reaction to re-establish normal homeostasis when this is acutely and pathologically perturbed. In some chronic conditions, however, this system also contributes to the progress or symptoms of the disorder. As a consequence, new therapeutic drugs are being designed from both stimulants and blockers of endocannabinoid action.”

http://www.ncbi.nlm.nih.gov/pubmed/17353660

Endocannabinoids Measurement in Human Saliva as Potential Biomarker of Obesity

Background

“The discovery of the endocannabinoid system and of its role in the regulation of energy balance has significantly advanced our understanding of the physiopathological mechanisms leading to obesity and type 2 diabetes. New knowledge on the role of this system in humans has been acquired by measuring blood endocannabinoids. Here we explored endocannabinoids and related N-acylethanolamines in saliva and verified their changes in relation to body weight status and in response to a meal or to body weight loss.”

“The discovery of the endocannabinoid system (ECS) and of its impact on the regulation of energy homeostasis represents a significant advance in the study of obesity and type 2 diabetes [1][4].”

“The saliva is the first digestive secretion produced in response to the ingestion of food [11]. Therefore, it is reasonable to investigate whether signals and systems involved in the regulation of food intake, such as the ECS, might be present in saliva and exert a functional role. Besides, saliva offers distinctive advantages over serum or plasma as a diagnostic tool, thanks to the non-invasiveness of the collection procedure.”

“The ECS is present in human salivary glands.”

“Changes in salivary endocannabinoids and N-acylethanolamines levels in response to body weight loss.”

“Here we demonstrate that endocannabinoids and related N-acylethanolamines can be reliably detected and quantified in human saliva. Similarly to what already reported for circulating levels in the blood [7], [9], [10], the salivary concentration of AEA and OEA were significantly increased in obese, insulin-resistant subjects as compared to normal weight controls.”

“the present findings overall indicate that salivary AEA might be a useful biomarker in human obesity, in particular considering that salivary samples are easy to collect, require a non-invasive procedure advantageous when performing studies in obese subjects in whom venipuncture may be difficult, and can be repeatedly collected at home by the patient during a therapeutic intervention. This type of tool could therefore be used to better phenotype the obese population, assess responses to treatment, or to further study the physiology of the ECS in humans, by investigating salivary endocannabinoid responses under various conditions.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409167/

The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning?

Abstract

“The endocannabinoid system (ECS) consists of two receptors (CB(1) and CB(2)), several endogenous ligands (primarily anandamide and 2-AG), and over a dozen ligand-metabolizing enzymes. The ECS regulates many aspects of embryological development and homeostasis, including neuroprotection and neural plasticity, immunity and inflammation, apoptosis and carcinogenesis, pain and emotional memory, and the focus of this review: hunger, feeding, and metabolism. This mini-review summarizes the main findings that supported the clinical use of CB1 antagonists/inverse agonists, the clinical concerns that have emerged, and the possible future of cannabinoid-based therapy of obesity and related diseases. The ECS controls energy balance and lipid metabolism centrally (in the hypothalamus and mesolimbic pathways) and peripherally (in adipocytes, liver, skeletal muscle and pancreatic islet cells), acting through numerous anorexigenic and orexigenic pathways. Obese people seem to display an increased endocannabinoid tone, driving CB(1) receptor in a feed-forward dysfunction. Several CB(1) antagonists/inverse agonists have been developed for the treatment of obesity. Although these drugs were found to be efficacious at reducing food intake as well as abdominal adiposity and cardiometabolic risk factors, they resulted in adverse psychiatric effects that limited their use and finally led to the end of the clinical use of systemic CB(1) ligands with significant inverse agonist activity for complicated obesity. However, the existence of alternatives such as CB(1) partial agonists, neutral antagonists, antagonists restricted to the periphery, allosteric modulators and other potential targets within the ECS indicate that a cannabinoid-based therapy for the management of obesity and its associated cardiometabolic sequelae should remain open for consideration.”

http://www.ncbi.nlm.nih.gov/pubmed/20347862

The role of the endocannabinoid system in the control of energy homeostasis

Abstract

“The endocannabinoid system has recently emerged as an important regulator of energy homeostasis, involved in the control of both appetite and peripheral fat metabolism. We briefly review current understanding of the possible sites of action and cellular mechanisms involved in the central appetitive and peripheral metabolic effects of endocannabinoids. Studies in our laboratory, using leptin-deficient obese rodents and CB1 cannabinoid receptor (CB1)-deficient mice, have indicated that endocannabinoids acting via CB1 are involved in the hunger-induced increase in food intake and are negatively regulated by leptin in brain areas involved in appetite control, including the hypothalamus, limbic forebrain and amygdala. CB1-/- mice are lean and are resistant to diet-induced obesity (DIO) despite similar energy intake to wild-type mice with DIO, suggesting that CB1 regulation of body weight involves additional peripheral targets. Such targets appear to include both adipose tissue and the liver. CB1 expressed in adipocytes has been implicated in the control of adiponectin secretion and lipoprotein lipase activity. Recent findings indicate that both endocannabinoids and CB1 are present in the liver and are upregulated in DIO. CB1 stimulation increases de novo hepatic lipogenesis through activation of the fatty acid biosynthetic pathway. Components of this pathway are also expressed in the hypothalamus where they have been implicated in the regulation of appetite. The fatty acid biosynthetic pathway may thus represent a common molecular target for the central appetitive and peripheral metabolic effects of endocannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/16570103