Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders.

Publication cover image

“Immune system responsiveness results from numerous factors, including endogenous cannabinoid signaling in immunocytes termed the “immunocannabinoid” system. This system can be an important signaling pathway for immune modulation.

To assess the immunomodulating role of the cannabinoid 2 (CB2) receptor, we sought polymorphisms in the human gene, identified a common dinucleotide polymorphism, and investigated its effect on endocannabinoid-induced inhibition of T lymphocyte proliferation.

Collectively, these results demonstrate reduced endogenous fatty acid amide immunomodulatory responses in individuals with the CB2 188-189 GG/GG genotype and suggest that this CB2 gene variation may be a risk factor for autoimmunity.

The results also support the proposition that the CB2 receptor may represent a novel pharmacological target for selective agonists designed to suppress autoreactive immune responses”

https://jlb.onlinelibrary.wiley.com/doi/full/10.1189/jlb.0205111

https://www.ncbi.nlm.nih.gov/pubmed/15845647

Effects of cannabinoids on the immune system and central nervous system: therapeutic implications.

“Cannabinoids possess immunomodulatory activity, are neuroprotective in vivo and in vitro and can modify the production of inflammatory mediators… Cannabinoid-induced immunosuppression may have implications for the treatment of neurological disorders that are associated with excess immunological activity, such as multiple sclerosis and Alzheimer’s disease. There is anecdotal evidence that cannabis use improves the symptoms of multiple sclerosis, and studies with animal models are beginning to provide evidence for the mechanism of such effects. The development of nonpsychotropic cannabinoid analogues and modulators of the metabolism of endogenous cannabinoid ligands may lead to novel approaches to the treatment of neurodegenerative disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/18031185

The cannabinoid system and immune modulation

Figure 1.

“Studies on the effects of marijuana smoking have evolved into the discovery and description of the endocannabinoid system. To date, this system is composed of two receptors, CB1 and CB2, and endogenous ligands including anandamide, 2-arachidonoyl glycerol, and others. CB1 receptors and ligands are found in the brain as well as immune and other peripheral tissues. Conversely, CB2 receptors and ligands are found primarily in the periphery, especially in immune cells. Cannabinoid receptors are G protein-coupled receptors, and they have been linked to signaling pathways and gene activities in common with this receptor family. In addition, cannabinoids have been shown to modulate a variety of immune cell functions in humans and animals and more recently, have been shown to modulate T helper cell development, chemotaxis, and tumor development. Many of these drug effects occur through cannabinoid receptor signaling mechanisms and the modulation of cytokines and other gene products.

It appears the immunocannabinoid system is involved in regulating the brain-immune axis and might be exploited in future therapies for chronic diseases and immune deficiency.”

“The medicinal uses of marijuana were described centuries ago for diseases such as asthma, migraine, pain, convulsions, and anxiety (reviewed in ref.). More recently, emphasis has been placed on marijuana’s putative, beneficial effects on appetite, glaucoma, spasticity in multiple sclerosis, pain, and inflammation.

Recent experimental evidence supports marijuana’s therapeutic potential in some of these maladies.

The active plant ingredients in marijuana belong to the C21-cannabinoid compounds including the primary psychoactive compound, Δ9-tetrahydrocannabinol (THC). This cannabinoid along with others such as Δ8-THC, cannabidiol, and cannabinol, as well as chemical analogs, have been extensively studied over the years for their biological and therapeutic properties. Some of the properties of these agents have included effects on immunity ranging from suppression of resistance to infection to enhancement of IL-1 production by macrophages. These early studies about the immunomodulating effects of these drugs have been the subject of previous overviews and will not be reviewed here. Instead, we will briefly summarize the general features of the cannabinoid system and review recent findings on the structure and function of the cannabinoid system components in the immune system. For convenience, we will refer to this as the “immunocannabinoid” system.

CANNABINOID SYSTEM

Marijuana cannabinoids, analogs, and endocannabinoids”

https://jlb.onlinelibrary.wiley.com/doi/full/10.1189/jlb.0303101?sid=nlm%3Apubmed

Cannabinoids and the immune system.

“The effect of cannabimimetic agents on the function of immune cells such as T and B lymphocytes, natural killer cells and macrophages has been extensively studied over the past several decades using human and animal paradigms involving whole animal models as well as tissue culture systems.

From this work, it can be concluded that these drugs have subtle yet complex effects on immune cell function and that some of the drug activity is mediated by cannabinoid receptors expressed on the various immune cell subtypes.

However, the overall role of the cannabinoid system of receptors and ligands in human health and disease is still unclear and requires extensive elucidation.

Further studies will define the precise structure and function of the putative immunocannabinoid system, the potential therapeutic usefulness of these drugs in chronic diseases such as acquired immune deficiency syndrome and multiple sclerosis, the effects of these agents on tumour growth and induction of apoptosis, and the potential anti-inflammatory and proinflammatory properties of cannabimimetic compounds.

It is likely that the cannabinoid system, along with other neuroimmune systems, has a subtle but significant role in the regulation of immunity and that this role can eventually be exploited in the management of human disease.”