“This review covers reports published in the last 5 years on the anti-inflammatory activities of all classes of cannabinoids, including phytocannabinoids such as tetrahydrocannabinol and cannabidiol, synthetic analogs such as ajulemic acid and nabilone, the endogenous cannabinoids anandamide and related compounds, namely, the elmiric acids, and finally, noncannabinoid components of Cannabis that show anti-inflammatory action. It is intended to be an update on the topic of the involvement of cannabinoids in the process of inflammation. A possible mechanism for these actions is suggested involving increased production of eicosanoids that promote the resolution of inflammation. This differentiates these cannabinoids from cyclooxygenase-2 inhibitors that suppress the synthesis of eicosanoids that promote the induction of the inflammatory process.”
“INTRODUCTION
This review is intended to be an update on the topic of the involvement of cannabinoids in the process of inflammation. Other reviews cover certain aspects of this subject and the reader is referred to them for a discussion of earlier reports. In this review are reports published in the last 5 years on the activities of all classes of cannabinoids, including the endogenous cannabinoids such as anandamide, related compounds such as the elmiric acids (EMAs), and noncannabinoid components of Cannabis that show anti-inflammatory action. An interesting recently published example of the latter one is caryophyllene, an abundant component of Cannabis oil that shows anti-inflammatory activity and has high affinity for cannabinoid receptor 2 (CB2; 5).”
“Phytocannabinoids: Tetrahydrocannabinol and Cannabidiol”
“PLANT PREPARATIONS AND NONCANNABINOID CONSTITUENTS OF CANNABIS”
“Cannabis sativa is a complex botanical, and it is not unlikely that the therapeutic benefits of marijuana are due to some of the more than 60 cannabinoids and 200–250 noncannabinoid constituents of the plant. One noncannabinoid, the geranylated flavone cannflavin A (Fig. 5), is 30 times more potent than aspirin as an inhibitor of prostaglandin E2 . These potentially important findings have been overlooked, as most attention in marijuana research has been directed to the analgesic effects of the plant and to mechanisms of psychoactivity. A further example that this line of inquiry has remained dormant is a series of overlooked observations, which demonstrate potent anti-inflammatory actions of a crude marijuana extract and of the nonpsychoactive Cannabis constituents, CBD, cannabinol, and cannabichromene in the carrageenan paw edema model of acute inflammation in rats. Volatile oil products of the plant also have biological activity. Thus, pyrolysis products may add to the therapeutic properties of smoked marijuana. Several of the most abundant cannabinoid and noncannabinoid constituents of C. sativa are nonpsychoactive.”
“Flavonoids are ubiquitous plant phenolic compounds that consist of two aromatic rings linked by a three carbon bridge. They are attracting interest because of their antioxidant, antitumor, anti-inflammatory, and antimicrobial activities. The flavone luteolin, a constituent of C. sativa, is also found in spices and in vegetables such as celery and green pepper. When added to peripheral blood mononuclear cells in vitro, luteolin suppresses production of the inflammatory cytokines TNFα, IL-1b, and IL-6, actions that relate to a selective reduction in numbers of monocytes. Perhaps more importantly, luteolin inhibits growth of Plasmodium falciparum in vitro and protects against induction of colon cancer in mice.”
“CONCLUSIONS
Possibly the very earliest literature reference on Cannabis describes its use as an anti-inflammatory agent. The Chinese emperor Shen-nung (ca. 2000 B.C.), in a work called Pen-ts’ao Ching, noted many of the effects of Cannabis in humans. Among other properties, it was claimed that cannabis “undoes rheumatism”, suggesting possible anti-inflammatory effects. The reports described in this review of the current literature provide support for the claims made by the ancient Chinese healers. These more recent publications include relief from chronic neuropathic pain, fibromyalgia, rheumatoid arthritis, and postoperative pain. In addition, a large body of preclinical data on all classes of cannabinoids, including the endogenous examples, point to a variety of therapeutic targets for cannabinoids and important roles for the endocannabinoids in the physiology of inflammation.”
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664885/