Brain’s own cannabis compound protects against inflammation

“Some clinical studies have indicated that marijuana or its active cannabinoid ingredient alleviates symptoms of the inflammatory disease multiple sclerosis (MS). Also, researchers have found that the brain’s natural “endocannabinoids” are released after brain injury and are believed to alleviate neuronal damage. However, scientists have not understood how such substances act within the brain’s own immune system.

 Now, experiments by Oliver Ullrich and colleagues have pinpointed how one of the brain’s endocannabinoids protects neurons from inflammation after such damage. They say their studies could lead to new drugs to treat the inflammation and brain degeneration from MS or other such disorders.

In an article in the January 5, 2006, issue of Neuron, the researchers reported experiments showing how the endocannabinoid anandamide (AEA) protects brain cells from inflammation. Such a role in the brain’s immune system is distinct from cannabinoids’ effects on neuronal signaling that produce the behavioral effects of marijuana.”

http://www.bio-medicine.org/biology-news/Brains-own-cannabis-compound-protects-against-inflammation-2810-1/

Pot Chemical May Curb Inflammation – WebMD

“Marijuana’s active ingredient may curb inflammation and help treat skin allergies.

That news comes from researchers including Meliha Karsak, PhD, and Thomas Tuting, MD, of Germany’s University of Bonn.

Marijuana’s key compound, THC, is a type of chemical called a cannabinoid. The brain contains two types of cannabinoid receptors.

Karsak and colleagues studied mice born with or without cannabinoid receptors. The mice wore ear tags to identify them; those ear tags contained nickel.

The mice without cannabinoid receptors were particularly likely to have allergic skin reactions to the nickel in the ear tags.

The scientists reasoned that the mice’s allergies may have been linked to their lack of cannabinoid receptors.

Karsak’s team tested that theory in several experiments.

First, they turned off cannabinoid receptors in healthy mice. Those mice then became more likely to develop skin inflammation near their nickel ear tags.

Next, the researchers exposed other mice with cannabinoid receptors to a skin irritant. Some of the mice got THC shots after being exposed to the irritant. Others got a THC skin lotion before and after exposure to the irritant.

The THC shot and lotion both helped soothe the mice’s inflamed skin.

“If we dabbed THC solution onto the animals’ skin shortly before and after applying the allergen, a lot less swelling occurred than normal,” Tuting says in a University of Bonn news release.

In the journal Science, the researchers write that their study “strongly suggests” that the body’s cannabinoid system can help tame inflammation and that THC skin lotions have “promising potential” for treating skin allergies caused by contact with irritating chemicals.

However, the researchers didn’t test the THC lotion on skin allergies in people.”

http://www.webmd.com/allergies/news/20070607/pot-chemical-may-curb-inflammation

“Attenuation of allergic contact dermatitis through the endocannabinoid system…These results demonstrate a protective role of the endocannabinoid system in contact allergy in the skin and suggest a target for therapeutic intervention.”  http://www.ncbi.nlm.nih.gov/pubmed/17556587

The role of cannabinoid system on immune modulation: therapeutic implications on CNS inflammation.

Abstract

“There is a growing amount of evidence suggesting that cannabinoids may be neuroprotective in CNS inflammatory conditions. Advances in the understanding of the physiology and pharmacology of the cannabinoid system have increased the interest of cannabinoids as potential therapeutic targets. Cannabinoid receptors and their endogenous ligands, the endocannabinoids, have been detected in cells of the immune system, as well as in brain glial cells. In the present review it is summarized the effects of cannabinoids on immune reactivity and on the regulation of neuroinflammatory processes associated with brain disorders with special attention to chronic inflammatory demyelinating diseases such as multiple sclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/16026313

Cannabinoid signalling regulates inflammation and energy balance: the importance of the brain-gut axis.

Abstract

“Energy balance is controlled by centres of the brain which receive important inputs from the gastrointestinal tract, liver, pancreas, adipose tissue and skeletal muscle, mediated by many different signalling molecules. Obesity occurs when control of energy intake is not matched by the degree of energy expenditure. Obesity is not only a state of disordered energy balance it is also characterized by systemic inflammation. Systemic inflammation is triggered by the leakage of bacterial lipopolysaccharide through changes in intestinal permeability. The endocannabinoid system, consisting of the cannabinoid receptors, endogenous cannabinoid ligands and their biosynthetic and degradative enzymes, plays vital roles in the control of energy balance, the control of intestinal permeability and immunity. In this review we will discuss how the endocannabinoid system, intestinal microbiota and the brain-gut axis are involved in the regulation of energy balance and the development of obesity-associated systemic inflammation. Through direct and indirect actions throughout the body, the endocannabinoid system controls the development of obesity and its inflammatory complications.”

http://www.ncbi.nlm.nih.gov/pubmed/22269477