Activation of Cannabinoid Receptor 2 Prevents Colitis-Associated Colon Cancer through Myeloid Cell De-activation Upstream of IL-22 Production

iScience journal (@iScience_CP) | Twitter
” Here we show that delta-9-tetrahydrocannabinol (THC) attenuates colitis-associated colon cancer and colitis induced by anti-CD40.
 THC can prevent the development of colitis-associated colon cancer in mice.”

“Study reveals how cannabinoids may be useful to prevent colon cancer”   https://medicalxpress.com/news/2020-09-reveals-cannabinoids-colon-cancer.html

“Key cannabis chemical may help prevent colon cancer, researchers say”   https://www.heraldmailmedia.com/news/nation/key-cannabis-chemical-may-help-prevent-colon-cancer-researchers-say/article_7afd0a72-eead-57f0-a1d3-006be62b7469.html

“Treatment with a cannabinoid prevented the development of colon cancers in mice” https://www.news-medical.net/news/20200915/Treatment-with-a-cannabinoid-prevented-the-development-of-colon-cancers-in-mice.aspx

Figure thumbnail fx1

No Evidence of Altered Reactivity to Experimentally Induced Pain Among Regular Cannabis Users

Clinical Journal of Pain,Philadelphia - Gainbuzz“Recent years have seen an increase in the adoption of cannabinoid medicines, which have demonstrated effectiveness for the treatment of chronic pain.

However, the extent to which frequent cannabis use (CU) influences sensitivity to acute pain has not been systematically examined. Such a determination is clinically relevant in light of hypersensitivity to pain associated with prolonged use of other analgesics such as opioids, and reports of increased pain sensitivity to experimentally induced pain during acute cannabis intoxication.

This study explored differences in measures of pain intensity and tolerance. The authors hypothesized that individuals who report frequent CU would demonstrate greater experimental pain sensitivity.

Results: Frequent CU was not associated with hyperalgesia as cannabis users and nonusers did not exhibit differences on measures of pain tolerance (t (78)=-0.05; P=0.96), sensitivity (t (78)=-0.83; P=0.41), or intensity (t (78)=0.36; P=0.72).

Discussion: Frequent cannabis users did not demonstrate hyperalgesia. This finding should help to inform evaluations of the relative harms and benefits of cannabis analgesic therapies.”

https://pubmed.ncbi.nlm.nih.gov/32433075/

https://journals.lww.com/clinicalpain/Abstract/2020/08000/No_Evidence_of_Altered_Reactivity_to.4.aspx

“Pain tolerance among cannabis users. Unlike opioids, long-term cannabis use does not increase sensitivity to pain. “This study should come as good news to patients who are already using cannabis to treat pain,” says co-author Zach Walsh, who leads the UBC Therapeutic Recreational and Problematic Substance Use Lab which hosted the study. “Increases in pain sensitivity with opioids can really complicate an already tough situation; given increasing uptake of cannabis-based pain medications it’s a relief that we didn’t identify a similar pattern with cannabinoids.”

https://www.sciencedaily.com/releases/2020/09/200910120105.htm

Cannabis use is associated with greater total sleep time in middle-aged and older adults with and without HIV: A preliminary report utilizing digital health technologies

“Current literature on the effect of cannabis use on sleep quality is mixed, and few studies have used objectively-measured sleep measures or real-time sampling of cannabis use to examine this relationship.

The prevalence of cannabis use among older adults and persons living with HIV has increased in recent years, and poor sleep quality is elevated in these populations as well. However, research examining cannabis-sleep relationships in these populations is lacking. Thus, we aimed to examine the relationship between daily cannabis use and subsequent objectively-measured sleep quality in middle-aged and older adults with and without HIV.

In this pilot study, seventeen (11 HIV+, 6 HIV-) adults aged 50-70 who consumed cannabis completed four daily smartphone-based surveys for 14 days, in which they reported their cannabis use (yes/no) since the last survey. Participants also wore actigraphy watches during the 14-day period to objectively assess sleep quality (i.e., efficiency, total sleep time, and sleep fragmentation).

In linear mixed-effects models, cannabis use was significantly associated with greater subsequent total sleep time (β=0.56; p=0.046). Cannabis use was not related to a change in sleep efficiency (β=1.50; p=0.46) nor sleep fragmentation (β=0.846, p=0.756) on days with cannabis use versus days without cannabis use.

These preliminary results indicate cannabis use may have a positive effect on sleep duration in middle-aged and older adults. However, future studies with larger sample sizes that assess cannabis use in more detail (e.g., route of administration, dose, reason for use) are needed to further understand this relationship.”

https://pubmed.ncbi.nlm.nih.gov/32905460/

https://publications.sciences.ucf.edu/cannabis/index.php/Cannabis/article/view/59

Medicinal Cannabis and Synthetic Cannabinoid Use

medicina-logo“Cannabis products have been used for centuries by humans for recreational and medical purposes. Resent research, proposed the promising therapeutic potential of cannabis and related cannabinoids for a wide range of medical conditions, including psychiatric and neurological diseases.

This Special Issue presents the latest updates on medicinal cannabis and synthetic cannabinoids pharmacology, toxicology and new analytical methods to identify and quantify these compounds in conventional and non-conventional biological matrices. Moreover, it provides current data regarding their adverse effects, safety, application for medical purposes and their harmful effects.”

https://pubmed.ncbi.nlm.nih.gov/32906770/

https://www.mdpi.com/1010-660X/56/9/453

Druggable Targets in Endocannabinoid Signaling

 “Cannabis and cannabinoid-based extracts have long been utilized for their perceived therapeutic value, and support for the legalization of cannabis for medicinal purposes continues to increase worldwide.

Since the discovery of Δ9-tetrahydrocannabinol (THC) as the primary psychoactive component of cannabis over 50 years ago, substantial effort has been directed toward detection of endogenous mediators of cannabinoid activity. The discovery of anandamide and 2-arachidonoylglycerol as two endogenous lipid mediators of cannabinoid-like effects (endocannabinoids) has inspired exponential growth in our understanding of this essential pathway, as well as the pathological conditions that result from dysregulated endocannabinoid signaling.

This review examines current knowledge of the endocannabinoid system including metabolic enzymes involved in biosynthesis and degradation and their receptors, and evaluates potential druggable targets for therapeutic intervention.”

https://pubmed.ncbi.nlm.nih.gov/32894511/

https://link.springer.com/chapter/10.1007%2F978-3-030-50621-6_8

It Is Our Turn to Get Cannabis High: Put Cannabinoids in Food and Health Baskets

molecules-logo“Cannabis is an annual plant with a long history of use as food, feed, fiber, oil, medicine, and narcotics. Despite realizing its true value, it has not yet found its true place. Cannabis has had a long history with many ups and downs, and now it is our turn to promote it.

Cannabis contains approximately 600 identified and many yet unidentified potentially useful compounds. Cannabinoids, phenolic compounds, terpenoids, and alkaloids are some of the secondary metabolites present in cannabis. However, among a plethora of unique chemical compounds found in this plant, the most important ones are phytocannabinoids (PCs).

Over hundreds of 21-22-carbon compounds exclusively produce in cannabis glandular hairs through either polyketide and or deoxyxylulose phosphate/methylerythritol phosphate (DOXP/MEP) pathways. Trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are those that first come to mind while talking about cannabis. Nevertheless, despite the low concentration, cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabinodiol (CBND), and cannabinidiol (CBDL) may have potentially some medical effects.

PCs and endocannabinoids (ECs) mediate their effects mainly through CB1 and CB2 receptors. Despite all concerns regarding cannabis, nobody can ignore the use of cannabinoids as promising tonic, analgesic, antipyretic, antiemetic, anti-inflammatory, anti-epileptic, anticancer agents, which are effective for pain relief, depression, anxiety, sleep disorders, nausea and vomiting, multiple sclerosis, cardiovascular disorders, and appetite stimulation.

The scientific community and public society have now increasingly accepted cannabis specifically hemp as much more than a recreational drug. There are growing demands for cannabinoids, mainly CBD, with many diverse therapeutic and nutritional properties in veterinary or human medicine. The main objective of this review article is to historically summarize findings concerning cannabinoids, mainly THC and CBD, towards putting these valuable compounds into food, feed and health baskets and current and future trends in the consumption of products derived from cannabis.”

https://pubmed.ncbi.nlm.nih.gov/32899626/

https://www.mdpi.com/1420-3049/25/18/4036

Cannabidiol as a Novel Therapeutic for Immune Modulation

 “The immune-suppressive effects of cannabidiol (CBD) are attributed to the modulation of essential immunological signaling pathways and receptors. Mechanistic understanding of the pharmacological effects of CBD emphasizes the therapeutic potential of CBD as a novel immune modulator.

Studies have observed that the antagonists of CB1 and CB2 receptors and transient receptor potential vanilloid 1 reverse the immunomodulatory effects of CBD. CBD also inhibits critical activators of the Janus kinase/signal transducer and activator of transcription signaling pathway, as well as the nucleotide-binding oligomerization domain-like receptor signaling pathway, in turn decreasing pro-inflammatory cytokine production. Furthermore, CBD protects against cellular damage incurred during immune responses by modulating adenosine signaling.

Ultimately, the data overwhelmingly support the immunosuppressive effects of CBD and this timely review draws attention to the prospective development of CBD as an effective immune modulatory therapeutic.”

https://pubmed.ncbi.nlm.nih.gov/32903924/

https://www.dovepress.com/cannabidiol-as-a-novel-therapeutic-for-immune-modulation-peer-reviewed-article-ITT

Autism Spectrum Disorder and Medical Cannabis: Review and Clinical Experience

Seminars in Pediatric Neurology “Autism spectrum disorder (ASD) is a multifactorial, pervasive neurodevelopmental disorder defined by the core symptoms of significant impairment in social interaction and communication as well as restricted, repetitive patterns of behavior. In addition to these core behaviors, persons with ASD frequently have associated noncore behavioral disturbance (ie, self-injury, aggression), as well as several medical comorbidities. Currently, no effective treatment exists for the core symptoms of ASD.

This review reports the available preclinical and clinical data regarding the use of cannabis and cannabidiol in the treatment of core symptoms, noncore symptoms and comorbidities associated with ASD. Additionally, we describe our clinical experience working with children and young adults with ASD who have used cannabis or cannabidiol.

At present, preclinical and clinical data suggest a potential for therapeutic benefit among some persons with ASD and that it is overall well tolerated.

Further research is required to better identify patients who may benefit from treatment without adverse effects.”

https://pubmed.ncbi.nlm.nih.gov/32892960/

https://www.sciencedirect.com/science/article/abs/pii/S1071909120300449?via%3Dihub

Topical cannabis-based medicines – A novel paradigm and treatment for non-uremic calciphylaxis leg ulcers: An open label trial

“Non-Uremic Calciphylaxis (NUC) is a rare condition that often manifests as intractable and painful integumentary wounds, afflicting patients with a high burden of co-morbidity.

The Endocannabinoid System (ECS) is a ubiquitous signalling system that is theorised to be dysregulated within wound beds and associated peri-wound tissues.

Preclinical research has shown that the dominant chemical classes derived from the cannabis plant, cannabinoids, terpenes, and flavonoids, interact with the integumentary ECS to promote wound closure and analgesia.

This is a prospective open label cohort study involving two elderly Caucasian females with recalcitrant NUC leg ulcers of greater than 6 months duration.

Topical Cannabis-Based Medicines (TCBM) composed of cannabinoids, terpenes, and flavonoids were applied daily to both the wound bed and peri-wound tissues until complete wound closure was achieved.

Wounds were photographed regularly, and the digital images were subjected to planimetric analysis to objectively quantify the degree of granulation and epithelization. Analgesic utilisation, as a surrogate/proxy for pain scores, was also tracked. The cohort had a mean M3 multimorbidity index score of 3.31. Complete wound closure was achieved in a mean of 76.3 days. Additionally, no analgesics were required after a mean of 63 days.

The treatments were well tolerated with no adverse reactions. The positive results demonstrated in very challenging wounds such as NUC, among highly complex patients, suggest that TCBM may have an even broader role within integumentary and wound management.

This treatment paradigm warrants being trialled in other wound types and classes, and ultimately should be subjected to randomised controlled trials.”

https://pubmed.ncbi.nlm.nih.gov/32875692/

“Topical Cannabis‐Based Medicines, applied to both wound beds and peri‐wound tissues, represent a promising novel, non‐invasive, and safe treatment option for NUC leg ulcers.”

https://onlinelibrary.wiley.com/doi/full/10.1111/iwj.13484

image

A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT 1A Receptors

 SpringerLink“Previous preclinical studies have demonstrated that cannabidiol (CBD) and cannabigerol (CBG), two non-psychotomimetic phytocannabinoids from Cannabis sativa, induce neuroprotective effects on toxic and neurodegenerative processes.

Our results contribute to the understanding of the neuroprotective effect of CBD and CBG, showing differences with their acid forms, and also highlight the role of 5-HT1A receptors in the mechanisms of action of CBG.”

https://pubmed.ncbi.nlm.nih.gov/32886342/

https://link.springer.com/article/10.1007%2Fs12640-020-00277-y