Association between marijuana use and electrocardiographic abnormalities by middle age The Coronary Artery Risk Development in Young Adults (CARDIA) Study

 Addiction

“Aims

To evaluate the prevalence of electrocardiogram (ECG) abnormalities in marijuana users as an indirect measure of subclinical cardiovascular disease (CVD).

Findings

Among the 2,585 participants with an ECG at Year 20, mean age was 46, 57% were women, 45% were black. 83% had past exposure to marijuana and 11% were using marijuana currently. One hundred and seventy‐three participants (7%) had major abnormalities and 944 (37%) had minor abnormalities. Comparing current with never use in multivariable‐adjusted models, the OR for major ECG abnormalities was 0.60 (95% CI: 0.32 to 1.15) and for minor ECG abnormalities 1.21 (95% CI: 0.87 to 1.68). Results did not change after stratifying by sex and race.

Cumulative marijuana use was not associated with ECG abnormalities.

Conclusion

In a middle‐aged US population, lifetime cumulative and occasional current marijuana use were not associated with increases in electrocardiogram abnormalities. This adds to the growing body of evidence that occasional marijuana use and cardiovascular disease events and markers of subclinical atherosclerosis are not associated.”

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.15188?af=R

“Using cannabis not associated with heart abnormalities at middle age: study”  https://leaderpost.com/wellness/using-cannabis-not-associated-with-heart-abnormalities-at-middle-age-study/wcm/a43cafba-42b3-4b74-9ea7-50a2cf0d62e3/

Long Term Delta-9-tetrahydrocannabinol Administration Inhibits Proinflammatory Responses in Minor Salivary Glands of Chronically Simian Immunodeficieny Virus Infected Rhesus Macaques

 viruses-logo“HIV/SIV-associated oral mucosal disease/dysfunction (HAOMD) (gingivitis/periodontitis/salivary adenitis) represents a major comorbidity affecting HIV patients on anti-retroviral therapy.

Using a systems biology approach, we investigated molecular changes (mRNA/microRNA) underlying HAOMD and its modulation by phytocannabinoids (delta-9-tetrahydrocannabinol (∆9-THC)) in uninfected (n = 5) and SIV-infected rhesus macaques untreated (VEH-untreated/SIV; n = 7) or treated with vehicle (VEH/SIV; n = 3) or ∆9-THC (THC/SIV; n = 3).

Relative to controls, fewer mRNAs were upregulated in THC/SIV compared to VEH-untreated/SIV macaques. Gene enrichment analysis showed differential enrichment of biological functions involved in anti-viral defense, Type-I interferon, Toll-like receptor, RIG-1 and IL1R signaling in VEH-untreated/SIV macaques. We focused on the anti-ER-stress anterior gradient-2 (AGR2), epithelial barrier protecting and anti-dysbiotic WAP Four-Disulfide Core Domain-2 (WFDC2) and glucocorticoid-induced anti-inflammatory TSC22D3 (TSC22-domain family member-3) that were significantly downregulated in oropharyngeal mucosa (OPM) of VEH-untreated/SIV macaques.

All three proteins localized to minor salivary gland acini and secretory ducts and showed enhanced and reduced expression in OPM of THC/SIV and VEH/SIV macaques, respectively. Additionally, inflammation associated miR-21, miR-142-3p and miR-29b showed significantly higher expression in OPM of VEH-untreated/SIV macaques. TSC22D3 was validated as a target of miR-29b.

These preliminary translational findings suggest that phytocannabinoids may safely and effectively reduce oral inflammatory responses in HIV/SIV and other (autoimmune) diseases.”

https://pubmed.ncbi.nlm.nih.gov/32630206/

https://www.mdpi.com/1999-4915/12/7/713

Phytocannabinoids: Origins and Biosynthesis

 Cell Press Internship (part 1) – lionfishexplorer“Phytocannabinoids are bioactive natural products found in some flowering plants, liverworts, and fungi that can be beneficial for the treatment of human ailments such as pain, anxiety, and cachexia. Targeted biosynthesis of cannabinoids with desirable properties requires identification of the underlying genes and their expression in a suitable heterologous host. We provide an overview of the structural classification of phytocannabinoids based on their decorated resorcinol core and the bioactivities of naturally occurring cannabinoids, and we review current knowledge of phytocannabinoid biosynthesis in Cannabis, Rhododendron, and Radula species. We also highlight the potential in planta roles of phytocannabinoids and the opportunity for synthetic biology approaches based on combinatorial biochemistry and protein engineering to produce cannabinoid derivatives with improved properties.”

https://pubmed.ncbi.nlm.nih.gov/32646718/

https://linkinghub.elsevier.com/retrieve/pii/S1360138520301874

Impact of Cannabis-Based Medicine on Alzheimer’s Disease by Focusing on the Amyloid β- Modifications: A Systematic Study

 “Deposition of amyloid-beta (Aβ) peptide in the brain is the leading source of the onset and progression of Alzheimer’s disease (AD). Recent studies have suggested that anti-amyloidogenic agents may be a suitable therapeutic strategy for AD.

Aim: The current review was proposed to address the beneficial effects of cannabis-based drugs for the treatment of AD, focusing primarily on Aβ modifications.

Result: A total of 17 studies were identified based on the inclusion criteria; however, nine studies qualified for this systematic review. The maximum and minimum cannabis dosages, mostly CBD and THC in animal studies, were 0.75 and 50 mg/kg, respectively. Cannabis (CBD and THC) was injected for 10 to 21 days. The findings of the 9 articles indicated that cannabis-based drugs might modulate Aβ modifications in several AD models.

Conclusion: Our findings establish that cannabis-based drugs inhibited the progression of AD by modulating Aβ modifications.”

https://pubmed.ncbi.nlm.nih.gov/32640965/

https://www.eurekaselect.com/183559/article

Evaluation of the Potential Use of Cannabidiol in the Treatment of Cocaine Use Disorder: A Systematic Review

 Pharmacology Biochemistry and BehaviorCannabinoids may have an important therapeutic potential for the treatment of dependence on crack cocaine.

Cannabidiol (CBD), in particular, has anxiolytic, antipsychotic and anticonvulsant properties and plays a role in regulating motivation circuitry and controlling sleep disorders. Several studies were performed evaluating CBD in experimental models for cocaine.

This systematic review aims evaluate the potential use of CBD in the treatment of cocaine use disorder.

Major findings: Fifty-one studies were analyzed, and 14 were selected. No studies conducted with humans were found; only one clinical trial was ongoing. The results were grouped into the following categories: cocaine self-administration, brain-stimulation reward, conditioned place preference, neuronal proliferation, anxiety, hepatic protection, anticonvulsant effect and locomotor sensitization response Only four studies had a low risk of bias. CBD promotes reduction on cocaine self-administration. Also, it interferes in cocaine induce brain reward stimulation and dopamine release. CBD promotes alteration in contextual memory associated with cocaine and in the neuroadaptations, hepatotoxicity and seizures induced by cocaine.

Conclusion: The evidence indicates that CBD is a promising adjunct therapy for the treatment of cocaine dependence due to its effect on: cocaine reward effects, cocaine consumption, behavioral responses, anxiety, neuronal proliferation, hepatic protection and safety. Moreover, clinical trials are strongly required to determine whether the findings in animal models occur in humans diagnosed for cocaine or crack cocaine use disorder.”

https://pubmed.ncbi.nlm.nih.gov/32645315/

“CBD is a promising adjunct therapy for the treatment of cocaine dependence. CBD promotes reduction on cocaine self-administration.”

https://www.sciencedirect.com/science/article/pii/S0091305720300307?via%3Dihub

Anticancer Effect of New Cannabinoids Derived From Tetrahydrocannabinolic Acid on PANC-1 and AsPC-1 Human Pancreas Tumor Cells

View details for Journal of Pancreatic Cancer cover image

“New tetrahydrocannabinolic acid (THCA) derivatives ALAM027 and ALAM108 were proposed for the treatment of the pancreatic cancer disease.

Methods: The in vitro effect of new cannabinoids ALAM027 and ALAM108 was tested against PANC-1 and AsPC-1 cell lines by CellTiter Glo assay. Pancreatic cancer xenograft model was used for the in vivo anticancer activity study of these compounds on PANC-1 cells.

Results: The in vitro study of new cannabinoids showed greater activity of ALAM108 than ALAM027 both for PANC-1 and AsPC-1 cells. The in vivo study of new cannabinoids on PANC-1 cells showed that their oral administration was effective in reducing tumor volume and tumor weight, and did not lead to any discomfort and weight loss of mice.

Conclusion: The cannabinoids ALAM108 and ALAM027 inhibited the tumor growing 1.6-2 times in mice with human PANC-1 cells.”

https://pubmed.ncbi.nlm.nih.gov/32642629/

“The in vitro study of new cannabinoids showed greater activity of ALAM108 than of ALAM027 both for PANC-1 and AsPC-1 pancreas tumor cells. The in vivo study of these cannabinoids on PANC-1 cells showed that their oral administration decreased the tumor size 1.6–2 times and did not lead to any discomfort, psychotic effects, and weight loss of mice. Further study of these compounds will allow to determine the mechanism of their action on cancer cells and may open the way to new therapeutic drugs based on THCA.”

https://www.liebertpub.com/doi/10.1089/pancan.2020.0003

FIG. 1.

Cannabinoids and Cannabinoid Receptors: The Story So Far

 iScience journal (@iScience_CP) | Twitter“Like most modern molecular biology and natural product chemistry, understanding cannabinoid pharmacology centers around molecular interactions, in this case, between the cannabinoids and their putative targets, the G-protein coupled receptors (GPCRs) cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2). Understanding the complex structure and interplay between the partners in this molecular dance is required to understand the mechanism of action of synthetic, endogenous, and phytochemical cannabinoids. This review, with 91 references, surveys our understanding of the structural biology of the cannabinoids and their target receptors including both a critical comparison of the extant crystal structures and the computationally derived homology models, as well as an in-depth discussion about the binding modes of the major cannabinoids. The aim is to assist in situating structural biochemists, synthetic chemists, and molecular biologists who are new to the field of cannabis research.”

https://pubmed.ncbi.nlm.nih.gov/32629422/

https://www.cell.com/iscience/pdf/S2589-0042(20)30488-0.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2589004220304880%3Fshowall%3Dtrue

Cannabidiol and Sports Performance: A Narrative Review of Relevant Evidence and Recommendations for Future Research

Sports Medicine - Open Cover Image “Cannabidiol (CBD) is a non-intoxicating cannabinoid derived from Cannabis sativa. CBD initially drew scientific interest due to its anticonvulsant properties but increasing evidence of other therapeutic effects has attracted the attention of additional clinical and non-clinical populations, including athletes.

Unlike the intoxicating cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), CBD is no longer prohibited by the World Anti-Doping Agency and appears to be safe and well-tolerated in humans. It has also become readily available in many countries with the introduction of over-the-counter “nutraceutical” products.

The aim of this narrative review was to explore various physiological and psychological effects of CBD that may be relevant to the sport and/or exercise context and to identify key areas for future research. As direct studies of CBD and sports performance are is currently lacking, evidence for this narrative review was sourced from preclinical studies and a limited number of clinical trials in non-athlete populations.

Preclinical studies have observed robust anti-inflammatory, neuroprotective and analgesic effects of CBD in animal models. Preliminary preclinical evidence also suggests that CBD may protect against gastrointestinal damage associated with inflammation and promote healing of traumatic skeletal injuries. However, further research is required to confirm these observations.

Early stage clinical studies suggest that CBD may be anxiolytic in “stress-inducing” situations and in individuals with anxiety disorders. While some case reports indicate that CBD improves sleep, robust evidence is currently lacking. Cognitive function and thermoregulation appear to be unaffected by CBD while effects on food intake, metabolic function, cardiovascular function, and infection require further study.

CBD may exert a number of physiological, biochemical, and psychological effects with the potential to benefit athletes. However, well controlled, studies in athlete populations are required before definitive conclusions can be reached regarding the utility of CBD in supporting athletic performance.”

https://pubmed.ncbi.nlm.nih.gov/32632671/

“CBD has been reported to exert a number of physiological, biochemical, and psychological effects that have the potential to benefit athletes. For instance, there is preliminary supportive evidence for anti-inflammatory, neuroprotective, analgesic, and anxiolytic actions of CBD and the possibility it may protect against GI damage associated with inflammation and promote the healing of traumatic skeletal injuries.”

https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-020-00251-0

Cannabinoids in Multiple Sclerosis: A Neurophysiological Analysis

Publication cover image “Objectives: To investigate the action of cannabinoids on spasticity and pain in secondary progressive multiple sclerosis, by means of neurophysiological indexes.

Conclusions: The THC-CBD spray improved spasticity and pain in secondary progressive MS patients. The spray prolonged CSP duration, which appears a promising tool for assessing and monitoring the analgesic effects of THC-CBD in MS.”

https://pubmed.ncbi.nlm.nih.gov/32632918/

https://onlinelibrary.wiley.com/doi/abs/10.1111/ane.13313

Administration of Δ9-Tetrahydrocannabinol (THC) Post-Staphylococcal Enterotoxin B Exposure Protects Mice From Acute Respiratory Distress Syndrome and Toxicity

Frontiers in Pharmacology welcomes new Field Chief Editor ...“Acute Respiratory Distress Syndrome (ARDS) is a life-threatening complication that can ensue following Staphylococcus aureus infection. The enterotoxin produced by these bacteria (SEB) acts as a superantigen thereby activating a large proportion of T cells leading to cytokine storm and severe lung injury.

Δ9Tetrahydrocannabinol (THC), a psychoactive ingredient found in Cannabis sativa, has been shown to act as a potent anti-inflammatory agent. In the current study, we investigated the effect of THC treatment on SEB-induced ARDS in mice.

While exposure to SEB resulted in acute mortality, treatment with THC led to 100% survival of mice. THC treatment significantly suppressed the inflammatory cytokines, IFN-γ and TNF-α. Additionally, THC elevated the induction of regulatory T cells (Tregs) and their associated cytokines, IL-10 and TGF-β. Moreover, THC caused induction of Myeloid-Derived Suppressor Cells (MDSCs).

THC acted through CB2 receptor as pharmacological inhibitor of CB2 receptors blocked the anti-inflammatory effects. THC-treated mice showed significant alterations in the expression of miRNA (miRs) in the lung-infiltrated mononuclear cells (MNCs). Specifically, THC caused downregulation of let7a-5p which targeted SOCS1 and downregulation of miR-34-5p which caused increased expression of FoxP3, NOS1, and CSF1R.

Together, these data suggested that THC-mediated alterations in miR expression in the lungs may play a critical role in the induction of immunosuppressive Tregs and MDSCs as well as suppression of cytokine storm leading to attenuation of SEB-mediated lung injury.”

https://pubmed.ncbi.nlm.nih.gov/32612530/

“In summary, the current study suggests that treatment of mice with THC post-SEB challenge protects mice from SEB-mediated toxicity by inhibiting inflammation and ARDS through the modulation of miRs. Because SEB is a super antigen that drives cytokine storm, our studies suggest that THC is a potent anti-inflammatory agent that has the potential to be used as a therapeutic modality to treat SEB-induced ARDS.

It is of interest to note that a significant proportion of Coronavirus disease 2019 (COVID-19) patients come down with sepsis and ARDS accompanied by cytokine storm. ”

https://www.frontiersin.org/articles/10.3389/fphar.2020.00893/full