Cannabis Use in Palliative Oncology: A Review of the Evidence for Popular Indications.

Image result for Isr Med Assoc J.

“A flowering plant of variegated ingredients and psychoactive qualities, cannabis has long been used for medicinal and recreational purposes. Currently, cannabis is approved in several countries for indications of symptomatic alleviation. However, limited knowledge on the benefits and risks precludes inclusion of cannabis in standard treatment guidelines. This review provides a summary of the available literature on the use of cannabis and cannabinoid-based medicines in palliative oncology. Favorable outcomes are demonstrated for chemotherapy-induced nausea and vomiting and cancer-related pain, with evidence of advantageous neurological interactions. Benefit in the treatment of anorexia, insomnia and anxiety is also suggested. Short- and long-term side effects appear to be manageable and to subside after discontinuation of the drug. Finally, cannabinoids have shown anti-neoplastic effects in preclinical studies in a wide range of cancer cells and some animal models. Further research is needed before cannabis can become a part of evidence-based oncology practice.”

https://www.ncbi.nlm.nih.gov/pubmed/28457056

Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity

“The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. There is a great interest in the development of selective type-2 cannabinoid receptor (CB2R) agonists as potential drug candidates for various pathophysiological conditions, which include chronic and inflammatory pain, pruritus, diabetic neuropathy and nephropathy, liver cirrhosis, and protective effects after ischaemic-reperfusion injury.” https://www.nature.com/articles/ncomms13958

“Pain relief without the high. Researchers at Leiden University led by Mario van der Stelt (Leiden Institute for Chemistry) have set ‘gold standards’ for developing new painkillers based on the medicinal effects of cannabis.”  https://www.sciencedaily.com/releases/2017/01/170104103916.htm

ScienceDaily

Report from a Survey of Parents Regarding the Use of Cannabidiol (Medicinal cannabis) in Mexican Children with Refractory Epilepsy.

Image result for Neurol Res Int.

“Structured online surveys were used to explore the experiences of the parents of children with refractory epilepsy using medicinal cannabis in Mexico during September 2016. The surveys, which were completed in full, were reviewed, and 53 cases of children aged between 9 months and 18 years were identified. Of these, 43 cases (82%) were from Mexico and 10 (18%) were from Latin American countries. Of the 43 Mexican cases, the diagnoses were as follows: 20 cases (47%) had Lennox-Gastaut syndrome (LGS); 13 cases (30%) had unspecified refractory epilepsy (URE); 8 cases (19%) had West syndrome (WS); 1 case (2%) had Doose syndrome (DS); and 1 case (2%) had Ohtahara syndrome (OS). In total, 47.1% of cases had previously been treated with 9 or more anticonvulsant therapies.

The parents reported a decrease in convulsions when cannabidiol was used in 81.3% of the cases; a moderate to significant decrease occurred in 51% of cases, and 16% of cases were free from seizure. The number of antiepileptic drugs being used was reduced in 9/43 (20.9%) cases. No serious adverse effects were reported, with only some mild adverse effects, such as increased appetite or changes in sleep patterns, reported in 42% of cases.”

https://www.ncbi.nlm.nih.gov/pubmed/28392943

Terpene synthases from Cannabis sativa.

 Image result for PLoS One.

“Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence.

Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties.

Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b.

Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene.

Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.”

https://www.ncbi.nlm.nih.gov/pubmed/28355238

Cannabis for Pain and Headaches: Primer.

Image result for Curr Pain Headache Rep.

“Marijuana has been used both medicinally and recreationally since ancient times and interest in its compounds for pain relief has increased in recent years. The identification of our own intrinsic, endocannabinoid system has laid the foundation for further research.

Synthetic cannabinoids are being developed and synthesized from the marijuana plant such as dronabinol and nabilone. The US Food and Drug Administration approved the use of dronabinol and nabilone for chemotherapy-associated nausea and vomiting and HIV (Human Immunodeficiency Virus) wasting. Nabiximols is a cannabis extract that is approved for the treatment of spasticity and intractable pain in Canada and the UK. Further clinical trials are studying the effect of marijuana extracts for seizure disorders.

Phytocannabinoids have been identified as key compounds involved in analgesia and anti-inflammatory effects.  Other compounds found in cannabis such as flavonoids and terpenes are also being investigated as to their individual or synergistic effects.

This article will review relevant literature regarding medical use of marijuana and cannabinoid pharmaceuticals with an emphasis on pain and headaches.”

https://www.ncbi.nlm.nih.gov/pubmed/28281107

Cannabinoid signaling in health and disease.

Image result for Canadian Journal of Physiology and Pharmacology

“Cannabis sativa has long been used for medicinal purposes.

To improve safety and efficacy, compounds from C. sativa were purified or synthesized and named under an umbrella group as cannabinoids.

Currently, several cannabinoids may be prescribed in Canada for a variety of indications such as nausea and pain.

More recently, an increasing number of reports suggest other salutary effects associated with endogenous cannabinoid signaling including cardioprotection.

The therapeutic potential of cannabinoids is therefore extended; however, evidence is limited and mechanisms remain unclear.

In addition, the use of cannabinoids clinically has been hindered due to pronounced psychoactive side effects.

This review provides an overview on the endocannabinoid system, including known physiological roles, and conditions in which cannabinoid receptor signaling has been implicated.”

An Australian nationwide survey on medicinal cannabis use for epilepsy: History of antiepileptic drug treatment predicts medicinal cannabis use.

Image result for epilepsy & behavior

“Epilepsy Action Australia conducted an Australian nationwide online survey seeking opinions on and experiences with the use of cannabis-based products for the treatment of epilepsy. The survey was promoted via the Epilepsy Action Australia’s main website, on their Facebook page, and by word of mouth. The survey consisted of 39 questions assessing demographics, clinical factors, including diagnosis and seizure types, and experiences with and opinions towards cannabis use in epilepsy. A total of 976 responses met the inclusion criteria.

Results show that 15% of adults with epilepsy and 13% of parents/guardians of children with epilepsy were currently using, or had previously used, cannabis products to treat epilepsy. Of those with a history of cannabis product use, 90% of adults and 71% of parents reported success in reducing seizure frequency after commencing cannabis products. The main reasons for medicinal cannabis use were to manage treatment-resistant epilepsy and to obtain a more favorable side-effect profile compared to standard antiepileptic drugs.

The number of past antiepileptic drugs tried was a significant predictor of medicinal cannabis use in both adults and children with epilepsy. Fifty-six percent of adults with epilepsy and 62% of parents/guardians of children with epilepsy expressed willingness to participate in clinical trials of cannabinoids. This survey provides insight into the use of cannabis products for epilepsy, in particular some of the likely factors influencing use, as well as novel insights into the experiences of and attitudes towards medicinal cannabis in people with epilepsy in the Australian community.”

https://www.ncbi.nlm.nih.gov/pubmed/28238865

Cannabinoid-based medicines for neurological disorders–clinical evidence.

Image result for Mol Neurobiol

“Whereas the cannabis plant has a long history of medicinal use, it is only in recent years that a sufficient understanding of the pharmacology of the main plant constituents has allowed for a better understanding of the most rational therapeutic targets.

The distribution of cannabinoid receptors, both within the nervous system and without, and the development of pharmacological tools to investigate their function has lead to a substantial increase in efforts to develop cannabinoids as therapeutic agents.

Concomitant with these efforts, the understanding of the pharmacology of plant cannabinoids at receptor and other systems distinct from the cannabinoid receptors suggests that the therapeutic applications of plant-derived cannabinoids (and presumably their synthetic derivatives also) may be diverse.

This review aims to discuss the clinical evidence investigating the use of medicines derived, directly or indirectly, from plant cannabinoids with special reference to neurological disorders.

Published studies suggest that the oral administration of cannabinoids may not be the preferred route of administration and that plant extracts show greater evidence of efficacy than synthetic compounds. One of these, Sativex (GW Pharmaceuticals), was approved as a prescription medicine in Canada in 2005 and is currently under regulatory review in the EU.” https://www.ncbi.nlm.nih.gov/pubmed/17952657

“Endocannabinoid System in Neurological Disorders.” https://www.ncbi.nlm.nih.gov/pubmed/27364363
“Cannabinoids in the Treatment of Neurological Disorders” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604187/

“Cannabinoids: new promising agents in the treatment of neurological diseases.”  https://www.ncbi.nlm.nih.gov/pubmed/25407719

Implication of cannabinoids in neurological diseases.

Image result for Cellular and Molecular Neurobiology

“1. Preparations from Cannabis sativa (marijuana) have been used for many centuries both medicinally and recreationally. 2. Recent advances in the knowledge of its pharmacological and chemical properties in the organism, mainly due to Delta(9)-tetrahydrocannabinol, and the physiological roles played by the endocannabinoids have opened up new strategies in the treatment of neurological and psychiatric diseases. 3. Potential therapeutic uses of cannabinoid receptor agonists include the management of spasticity and tremor in multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, cancer, and vasodilation that accompanies advanced cirrhosis. CB(1) receptor antagonists have therapeutic potential in Parkinson’s disease. 4. Dr. Julius Axelrod also contributed in studies on the neuroprotective actions of cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/16699878

“Medical marijuana: emerging applications for the management of neurologic disorders.” https://www.ncbi.nlm.nih.gov/pubmed/15458761

Cannabinoids activate monoaminergic signaling to modulate key C. elegans behaviors.

Image result for J Neurosci

“Cannabis or marijuana, a popular recreational drug, alters sensory perception and exerts a range of potential medicinal benefits.

The present study demonstrates that the endogenous cannabinoid receptor agonists, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) activate a canonical cannabinoid receptor in C. elegans and also modulate monoaminergic signaling at multiple levels.

2-AG or AEA inhibit nociception and feeding through a pathway requiring the cannabinoid-like receptor, NPR-19. 2-AG or AEA activate NPR-19 directly and cannabinoid-dependent inhibition can be rescued in npr-19 null animals by the expression of a human cannabinoid receptor, CB1, highlighting the orthology of the receptors.

Cannabinoids also modulate nociception and locomotion through an NPR-19-independent pathway requiring an α2A-adrenergic-like octopamine receptor, OCTR-1, and a 5-HT1A-like receptor, SER-4, that involves a complex interaction among cannabinoid, octopaminergic and serotonergic signaling. 2-AG activates OCTR-1 directly. In contrast, 2-AG does not activate SER-4 directly, but appears to enhance SER-4-dependent serotonergic signaling by increasing endogenous 5-HT.

This study defines a conserved cannabinoid signaling system in C. elegans, demonstrates the cannabinoid-dependent activation of monoaminergic signaling and highlights the advantages of studying cannabinoid signaling in a genetically-tractable whole animal model.

SIGNIFICANCE STATEMENTCannabis sativa causes euphoria and exerts a wide range of medicinal benefits. For years, cannabinoids have been studied at the cellular level using tissue explants with conflicting results. To better understand cannabinoid signaling, we have used the C. elegans model to examine the effects of cannabinoids on behavior. The present study demonstrates that mammalian cannabinoid receptor ligands activate a conserved cannabinoid signaling system in C. elegans and also modulate monoaminergic signaling, potentially impacting an array of disorders, including anxiety and depression. This study highlights the potential role of cannabinoids in modulating monoaminergic signaling, and the advantages of studying cannabinoid signaling in a genetically-tractable, whole-animal model.”

https://www.ncbi.nlm.nih.gov/pubmed/28188220