Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids.

 Image result for Front Mol Neurosci

“Medical marijuana is increasingly prescribed as an analgesic for a growing number of indications, amongst which terminal cancer and multiple sclerosis.

In this study we aimed to investigate the immune-cell modulatory properties of medical cannabis.

Healthy volunteers were asked to ingest medical cannabis, and kinome profiling was used to generate comprehensive descriptions of the cannabis challenge on inflammatory signal transduction in the peripheral blood of these volunteers.

Results were related to both short term and long term effects in patients experimentally treated with a medical marijuana preparation for suffering from abdominal pain as a result of chronic pancreatitis or other causes.

The results reveal an immunosuppressive effect of cannabinoid preparations via deactivation of signaling through the pro-inflammatory p38 MAP kinase and mTOR pathways and a concomitant deactivation of the pro-mitogenic ERK pathway. However, long term cannabis exposure in two patients resulted in reversal of this effect.

While these data provide a powerful mechanistic rationale for the clinical use of medical marijuana in inflammatory and oncological disease, caution may be advised with sustained use of such preparations.”

https://www.ncbi.nlm.nih.gov/pubmed/28174520

http://journal.frontiersin.org/article/10.3389/fnmol.2017.00014/full

Cannabidiol: Swinging the Marijuana Pendulum From ‘Weed’ to Medication to Treat the Opioid Epidemic.

Image result for trends in neurosciences

“Epidemics require a paradigm shift in thinking about all possible solutions. The rapidly changing sociopolitical marijuana landscape provides a foundation for the therapeutic development of medicinal cannabidiol to address the current opioid abuse crisis.”

https://www.ncbi.nlm.nih.gov/pubmed/28162799

Molecular Targets of the Phytocannabinoids: A Complex Picture.

Image result for UNC Greensboro

“For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., have been used for their medicinal, as well as, their psychotropic effects.

These effects are associated with the phytocannabinoids which are oxygen containing C21 aromatic hydrocarbons found in Cannabis sativa L.

To date, over 120 phytocannabinoids have been isolated from Cannabis.

For many years, it was assumed that the beneficial effects of the phytocannabinoids were mediated by the cannabinoid receptors, CB1 and CB2. However, today we know that the picture is much more complex, with the same phytocannabinoid acting at multiple targets.

This contribution focuses on the molecular pharmacology of the phytocannabinoids, including Δ9-THC and CBD, from the prospective of the targets at which these important compounds act.”

Synthesis of Phytocannabinoids.

Image result for ETH Zürich

“The changing legal landscape including medicinal and recreational consumption of Cannabis sativa has led to renewed interest to study the chemistry and biology of cannabinoids. The chemistry in this chapter highlights approaches to cannabinoid total synthesis with an emphasis on the implementation of modern methods and tactics, which provide access to modified structures and enable investigations of the biology of the cannabinoid product family.”  https://www.ncbi.nlm.nih.gov/pubmed/28120230

Phytochemistry of Cannabis sativa L.

Image result for University of Mississippi

“Cannabis (Cannabis sativa, or hemp) and its constituents-in particular the cannabinoids-have been the focus of extensive chemical and biological research for almost half a century since the discovery of the chemical structure of its major active constituent, Δ9-tetrahydrocannabinol (Δ9-THC).

The plant’s behavioral and psychotropic effects are attributed to its content of this class of compounds, the cannabinoids, primarily Δ9-THC, which is produced mainly in the leaves and flower buds of the plant.

Besides Δ9-THC, there are also non-psychoactive cannabinoids with several medicinal functions, such as cannabidiol (CBD), cannabichromene (CBC), and (CBG), along with other non-cannabinoid constituents belonging to diverse classes of natural products.

Today, more than 560 constituents have been identified in cannabis.

The recent discoveries of the medicinal properties of cannabis and the cannabinoids in addition to their potential applications in the treatment of a number of serious illnesses, such as glaucoma, depression, neuralgia, multiple sclerosis, Alzheimer’s, and alleviation of symptoms of HIV/AIDS and cancer, have given momentum to the quest for further understanding the chemistry, biology, and medicinal properties of this plant.

This contribution presents an overview of the botany, cultivation aspects, and the phytochemistry of cannabis and its chemical constituents. Particular emphasis is placed on the newly-identified/isolated compounds. In addition, techniques for isolation of cannabis constituents and analytical methods used for qualitative and quantitative analysis of cannabis and its products are also reviewed.”

https://www.ncbi.nlm.nih.gov/pubmed/28120229

Therapeutic Use of Cannabis in Inflammatory Bowel Disease.

Logo of gasthep

“The marijuana plant Cannabis sativa and its derivatives, cannabinoids, have grown increasingly popular as a potential therapy for inflammatory bowel disease (IBD). Studies have shown that modulation of the endocannabinoid system, which regulates various functions in the body and has been shown to play a key role in the pathogenesis of IBD, has a therapeutic effect in mouse colitis.

The plant Cannabis sativa has been used in medicinal practice for thousands of years. Anecdotal reports have suggested a therapeutic role for cannabis in the treatment of IBD for hundreds of years. A case report from 1990 describes patients with IBD maintaining remission of disease via cannabis use. Cannabinoids appear to have a clear role in gut pathology and offer a potential target for drug intervention in the treatment of IBD. Cannabis seems to be of symptomatic benefit to patients often refractory to conventional medicines.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5193087/

Experts’ Perspectives on the Role of Medical Marijuana in Oncology: a semi-structured interview study.

Image result for Psycho Oncology

“Expansion of medical marijuana (MM) laws in the United States may offer oncology new therapeutic options.

This study qualitatively explored professional opinion around the role of MM in cancer care.

Expert opinion was divided between conviction in marijuana’s medicinal potential to guardedness in this assertion, with no participant refuting MM’s utility outright.

Emergent themes included: that MM ameliorates cancer-related pain and nausea and is safer than certain conventional medications.

Participants called for enhanced purity and production standards, and further research on MM’s utility.”

https://www.ncbi.nlm.nih.gov/pubmed/28040884

Protective effects of trans-caryophyllene on maintaining osteoblast function.

Image result for IUBMB Life.

“Age-related osteoblast dysfunction is the main cause of age-related bone loss.

Trans-caryophyllene (TC) is an important constituent of the essential oils derived from several species of medicinal plants.

In this study, we investigated the effects of TC on osteoblast function in osteoblastic MC3T3-E1 cells. The results indicate that TC caused a significant elevation in collagen content, alkaline phosphatase activity, osteocalcin production, and mineralization, which are the four markers that account for the various stages of osteoblastic differentiation.

Our findings that TC promotes the formation of a mineralized extracellular matrix help to elucidate the role of CB2 signaling in the formation of bone and the maintenance of normal bone mass.”

https://www.ncbi.nlm.nih.gov/pubmed/28026135

“Trans-caryophyllene is a sesquiterpene present in many medicinal plants’ essential oils, such as Ocimum gratissimum and Cannabis sativa.”  https://www.ncbi.nlm.nih.gov/pubmed/24055516

In vitro Antimicrobial and Antioxidant Activity of Extracts from Six Chemotypes of Medicinal Cannabis

“Nowadays, medicinal cannabis (Cannabis sativa L) is in the focus of the researches not only for its high content of tetrahydrocannabinol (THC), but for other cannabinoids as well.

It has been reported that some of the identified substances (e.g. cannabidiol, cannabinochromene) possess anti-inflammatory and antimicrobial properties, which corresponds to its traditional use as wound healing agent at Pakistan.

The aim of this study was to evaluate antimicrobial and antioxidant ability of extracts from high potent Cannabis sativa chemotypes.

The six ethanolic extracts prepared from dried inflorescence of five medicinal cannabis chemotypes (Nurse Jackie, Jilly Bean, Nordle, Jack Cleaner, Conspiracy Kush) were tested by standard microdilution method against Staphylococcus aureus (three strains), Streptococcus pyogenes and the yeast Candida albicans.

Those microbial strains are present on skin and can cause complication during wound healing process.

The antioxidative activity, which plays an important role in wound healing process, was tested by oxygen radical absorbance capacity test (ORAC).

All tested extracts demonstrated high antimicrobial activity against two strains of S. aureus and S. pyogenes (MIC ranged from 4 – 16 µg·mL-1), moreover high antioxidant capacity was observed (ORAC ranged from 800 – 1300 µg TE/mg of extract).

The results indicate that cannabis has high potential to be used in ointments and other material for wound healing.

However, further research on the identification of the active components is needed.”

https://www.thieme-connect.com/DOI/DOI?10.1055/s-0036-1596302

IN VITRO ANTIMICROBIAL AND ANTIOXIDANT ACTIVITIES OF TWO MEDICINAL PLANTS AGAINST SOME CLINICALLY IMPORTANT BACTERIA

Image result for Lahore College for Women University

“The aim of the present study was to evaluate the antimicrobial potential of Amaranthus viridis (Chowlai) and Cannabis sativa (Bhang) against clinically important bacteria, Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli.

The study revealed that leaves of A. viridis and C. sativa possess broad spectrum antimicrobial activity and natural antioxidants that can be of considerable pharmaceutical importance.

Leaf and stem extracts of A. viridis and C. sativa demonstrated a broad spectrum efficacy against Grampositive and Gram-negative bacteria. These plants also exhibited good antioxidant activity.”

https://fuuast.edu.pk/biology%20journal/images/pdfs/2016/june/paper17.pdf

Image result for Amaranthus viridis (Chaulai)

Image result for Cannabis sativa (Bhang)