Cannabinoids for nausea and vomiting in adults with cancer receiving chemotherapy.

“Cannabis has a long history of medicinal use.

Cannabis-based medications (cannabinoids) are based on its active element, delta-9-tetrahydrocannabinol (THC), and have been approved for medical purposes.

Cannabinoids may be a useful therapeutic option for people with chemotherapy-induced nausea and vomiting that respond poorly to commonly used anti-emetic agents (anti-sickness drugs).

Cannabis-based medications may be useful for treating refractory chemotherapy-induced nausea and vomiting.”

http://www.ncbi.nlm.nih.gov/pubmed/26561338

http://www.thctotalhealthcare.com/category/nauseavomiting/

Endocannabinoids in Multiple Sclerosis and Amyotrophic Lateral Sclerosis.

“There are numerous reports that people with multiple sclerosis (MS) have for many years been self-medicating with illegal street cannabis or more recently medicinal cannabis to alleviate the symptoms associated with MS and also amyotrophic lateral sclerosis (ALS).

These anecdotal reports have been confirmed by data from animal models and more recently clinical trials on the ability of cannabinoids to alleviate limb spasticity, a common feature of progressive MS (and also ALS) and neurodegeneration.

Experimental studies into the biology of the endocannabinoid system have revealed that cannabinoids have efficacy, not only in symptom relief but also as neuroprotective agents which may slow disease progression and thus delay the onset of symptoms.

This review discusses what we now know about the endocannabinoid system as it relates to MS and ALS and also the therapeutic potential of cannabinoid therapeutics as disease-modifying or symptom control agents, as well as future therapeutic strategies including the potential for slowing disease progression in MS and ALS.”

http://www.ncbi.nlm.nih.gov/pubmed/26408162

Neural correlates of cannabidiol and Δ9-tetrahydrocannabinol interactions in mice: implications for medical cannabis.

“It has been proposed that medicinal strains of cannabis and therapeutic preparations would be safer with a more balanced concentration ratio of Δ9-tetrahydrocannabinol (THC) to cannabidiol (CBD), as CBD reduces the adverse psychotropic effects of THC.

The aim of this study is to investigate whether CBD modulates THC-induced functional effects and c-Fos expression in a 1:1 dose ratio that approximates therapeutic strains of cannabis and nabiximols.

These data re-affirm that CBD modulates the pharmacological actions of THC and provide information regarding brain regions involved in the interaction between CBD and THC.”

http://www.ncbi.nlm.nih.gov/pubmed/26377899

Marijuana Use in Epilepsy: The Myth and the Reality.

“Marijuana has been utilized as a medicinal plant to treat a variety of conditions for nearly five millennia.

Over the past few years, there has been an unprecedented interest in using cannabis extracts to treat epilepsy, spurred on by a few refractory pediatric cases featured in the media that had an almost miraculous response to cannabidiol-enriched marijuana extracts.

This review attempts to answer the most important questions a clinician may have regarding the use of marijuana in epilepsy. First, we review the preclinical and human evidences for the anticonvulsant properties of the different cannabinoids, mainly tetrahydrocannabinol (THC) and cannabidiol (CBD).

Then, we explore the safety data from animal and human studies. Lastly, we attempt to reconcile the controversy regarding physicians’ and patients’ opinions about whether the available evidence is sufficient to recommend the use of marijuana to treat epilepsy.”

http://www.ncbi.nlm.nih.gov/pubmed/26299273

http://www.thctotalhealthcare.com/category/epilepsy-2/

Molecular Targets of Cannabidiol in Neurological Disorders.

“Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plantcannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD’s beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular pharmacology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD’s relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeutics, the results were variable. In some cases, the targets identified had little or no established link to the diseases considered. In others, molecular targets of CBD were entirely consistent with those already actively exploited in relevant, clinically used, neurological treatments. Finally, CBD was found to act upon a number of targets that are linked to neurological therapeutics but that its actions were not consistent withmodulation of such targets that would derive a therapeutically beneficial outcome. Overall, we find that while >65 discrete molecular targets have been reported in the literature for CBD, a relatively limited number represent plausible targets for the drug’s action in neurological disorders when judged by the criteria we set. We conclude that CBD is very unlikely to exert effects in neurological diseases through modulation of the endocannabinoid system. Moreover, a number of other molecular targets of CBD reported in the literature are unlikely to be of relevance owing to effects only being observed at supraphysiological concentrations. Of interest and after excluding unlikely and implausible targets, the remaining molecular targets of CBD with plausible evidence for involvement in therapeutic effects in neurological disorders (e.g., voltage-dependent anion channel 1, G protein-coupled receptor 55, CaV3.x, etc.) are associated with either the regulation of, or responses to changes in, intracellular calcium levels. While no causal proof yet exists for CBD’s effects at these targets, they represent the most probable for such investigations and should be prioritized in further studies of CBD’s therapeutic mechanism of action.”

http://www.ncbi.nlm.nih.gov/pubmed/26264914

Cannabis, Cannabinoids, and Cerebral Metabolism: Potential Applications in Stroke and Disorders of the Central Nervous System.

“No compound has generated more attention in both the scientific and recently in the political arena as much as cannabinoids.

These diverse groups of compounds referred collectively as cannabinoids have both been vilified due to its dramatic and potentially harmful psychotropic effects and glorified due to its equally dramatic and potential application in a number of acute and chronic neurological conditions.

Previously illegal to possess, cannabis, the plant where natural form of cannabinoids are derived, is now accepted in a growing number of states for medicinal purpose, and some even for recreational use, increasing opportunities for more scientific experimentation.

The purpose of this review is to summarize the growing body of literature on cannabinoids and to present an overview of our current state of knowledge of the human endocannabinoid system in the hope of defining the future of cannabinoids and its potential applications in disorders of the central nervous system, focusing on stroke.”

http://www.ncbi.nlm.nih.gov/pubmed/26238742

Selective Reduction of THC’s Unwanted Effects through Serotonin Receptor Inhibition

“While recreational marijuana users may seek the full range of its effects, broad medical use of THC—including for pain, nausea, and anxiety—is hindered by them.

In a new study, Xavier Viñals, Estefania Moreno, Peter McCormick, Rafael Maldonado, Patricia Robledo, and colleagues demonstrate that the cognitive effects of THC are triggered by a pathway separate from some of its other effects.

That pathway involves both a cannabinoid receptor and a serotonin receptor, and when this pathway is blocked, THC can still exert several beneficial effects, including analgesia, while avoiding impairment of memory.

The results of this study are potentially highly important, in that they identify a way to reduce some of what are usually thought of as THC’s unwanted side effects when used for medicinal purposes while maintaining several important benefits, including pain relief.

The widening acceptance of a role for THC in medicine may be accelerated by the option to reduce those side effects by selective pharmacological disruption or blocking of the heteromer.”

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002193

(1)H NMR and HPLC/DAD for Cannabis sativa L. chemotype distinction, extract profiling and specification.

“The medicinal use of different chemovars and extracts of Cannabis sativa L. requires standardization beyond ∆9-tetrahydrocannabinol (THC) with complementing methods.

We investigated the suitability of (1)H NMR key signals for distinction of four chemotypes measured in deuterated dimethylsulfoxide together with two new validated HPLC/DAD methods used for identification and extract profiling based on the main pattern of cannabinoids and other phenolics alongside the assayed content of THC, cannabidiol (CBD), cannabigerol (CBG) their acidic counterparts (THCA, CBDA, CBGA), cannabinol (CBN) and cannflavin A and B. Effects on cell viability (MTT assay, HeLa) were tested.

The dominant cannabinoid pairs allowed chemotype recognition via assignment of selective proton signals and via HPLC even in cannabinoid-low extracts from the THC, CBD and CBG type.

Substantial concentrations of cannabinoid acids in non-heated extracts suggest their consideration for total values in chemotype distinction and specifications of herbal drugs and extracts.

Cannflavin A/B are extracted and detected together with cannabinoids but always subordinated, while other phenolics can be accumulated via fractionation and detected in a wide fingerprint but may equally serve as qualitative marker only.

Cell viability reduction in HeLa was more determined by the total cannabinoid content than by the specific cannabinoid profile.

Therefore the analysis and labeling of total cannabinoids together with the content of THC and 2-4 lead cannabinoids are considered essential.

The suitability of analytical methods and the range of compound groups summarized in group and ratio markers are discussed regarding plant classification and pharmaceutical specification.”

No smoke, no fire: What the initial literature suggests regarding vapourized cannabis and respiratory risk

“Given current limitations in developing an inhalant alternative for delivering cannabis medication, smoked marijuana remains the most readily accessible form of cannabis among medicinal users…

Cannabis actually served as an asthma treatment in the 1800s and, perhaps, in ancient times…

Informed health care professionals may consider making recommendations to their medicinal cannabis patients for vapourization of the plant, particularly for those who want the rapid relief that oral administration fails to provide.

It is not our intention to encourage inappropriate use of the plant, but to increase safety for those who choose to use it.

Vapourization of cannabis is likely less harmful than smoking.

Preliminary findings do support the idea that vapourization is an improvement over smoking.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456813/

Photosynthetic response of Cannabis sativa L., an important medicinal plant, to elevated levels of CO2

“Cannabis sativa L. (Cannabaceae) is a widely distributed plant around the world. It has a long history of medicinal use as far back as the 6th century B.C. Cannabis sativa is the natural source of the cannabinoids, a unique group of terpeno-phenolic compounds that accumulate in the glandular trichomes of the plant.

Δ9-Tetrahydrocannabinolic acid (Δ9-THCA) is the major cannabinoid which upon decarboxylation with age or heating gives rise to Δ9-THC, the primary psychoactive agent. The pharmacologic and therapeutic potency of Cannabis preparations and Δ9-THC have been extensively reviewed.

Despite of its medicinal importance and widespread occurrence, to the best of our knowledge, no information is available on the consequences of rising atmospheric CO2 concentration on its photosynthesis and growth performance.

This study describes the short term effect of elevated CO2 on photosynthetic characteristics and stomatal response in four different high Δ9-THC yielding varieties of Cannabis sativa.

The higher water use efficiency (WUE) under elevated CO2 conditions in Cannabis sativa, primarily because of decreased stomatal conductance and subsequently the transpiration rate, may enable this species to survive under expected harsh greenhouse effects including elevated CO2 concentration and drought conditions.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550578/