The endocannabinoid-CB receptor system: Importance for development and in pediatric disease.

Abstract

“Endogenous cannabinoids (endocannabinoids) and their cannabinoid CB1 and CB2 receptors, are present from the early stages of gestation and play a number of vital roles for the developing organism. Although most of these data are collected from animal studies, a role for cannabinoid receptors in the developing human brain has been suggested, based on the detection of “atypically” distributed CB1 receptors in several neural pathways of the fetal brain. In addition, a role for the endocannabinoid system for the human infant is likely, since the endocannabinoid 2-arachidonoyl glycerol has been detected in human milk. Animal research indicates that the Endocannabinoid-CB1 Receptor (‘ECBR’) system fulfills a number of roles in the developing organism: 1. embryonal implantation (requires a temporary and localized reduction in anandamide); 2. in neural development (by the transient presence of CB1 receptors in white matter areas of the nervous system); 3. as a neuroprotectant (anandamide protects the developing brain from trauma-induced neuronal loss); 4. in the initiation of suckling in the newborn (where activation of the CB1 receptors in the neonatal brain is critical for survival). 5. In addition, subtle but definite deficiencies have been described in memory, motor and addictive behaviors and in higher cognitive (‘executive’) function in the human offspring as result of prenatal exposure to marihuana. Therefore, the endocanabinoid-CB1 receptor system may play a role in the development of structures which control these functions, including the nigrostriatal pathway and the prefrontal cortex. From the multitude of roles of the endocannabinoids and their receptors in the developing organism, there are two distinct stages of development, during which proper functioning of the endocannabinoid system seems to be critical for survival: embryonal implantation and neonatal milk sucking. We propose that a dysfunctional Endocannabinoid-CB1 Receptor system in infants with growth failure resulting from an inability to ingest food, may resolve the enigma of “non-organic failure-to-thrive” (NOFTT). Developmental observations suggest further that CB1 receptors develop only gradually during the postnatal period, which correlates with an insensitivity to the psychoactive effects of cannabinoid treatment in the young organism. Therefore, it is suggested that children may respond positively to medicinal applications of cannabinoids without undesirable central effects. Excellent clinical results have previously been reported in pediatric oncology and in case studies of children with severe neurological disease or brain trauma. We suggest cannabinoid treatment for children or young adults with cystic fibrosis in order to achieve an improvement of their health condition including improved food intake and reduced inflammatory exacerbations.”

http://www.ncbi.nlm.nih.gov/pubmed/15159678

Medicinal cannabis: is delta9-tetrahydrocannabinol necessary for all its effects?

Abstract

  “Cannabis is under clinical investigation to assess its potential for medicinal use, but the question arises as to whether there is any advantage in using cannabis extracts compared with isolated Delta9-trans-tetrahydrocannabinol (Delta9THC), the major psychoactive component. We have compared the effect of a standardized cannabis extract (SCE) with pure Delta9THC, at matched concentrations of Delta9THC, and also with a Delta9THC-free extract (Delta9THC-free SCE), using two cannabinoid-sensitive models, a mouse model of multiple sclerosis (MS), and an in-vitro rat brain slice model of epilepsy. Whilst SCE inhibited spasticity in the mouse model of MS to a comparable level, it caused a more rapid onset of muscle relaxation, and a reduction in the time to maximum effect compared with Delta9THC alone. The Delta9THC-free extract or cannabidiol (CBD) caused no inhibition of spasticity. However, in the in-vitro epilepsy model, in which sustained epileptiform seizures were induced by the muscarinic receptor agonist oxotremorine-M in immature rat piriform cortical brain slices, SCE was a more potent and again more rapidly-acting anticonvulsant than isolated Delta9THC, but in this model, the Delta9THC-free extract also exhibited anticonvulsant activity. Cannabidiol did not inhibit seizures, nor did it modulate the activity of Delta9THC in this model. Therefore, as far as some actions of cannabis were concerned (e.g. antispasticity), Delta9THC was the active constituent, which might be modified by the presence of other components. However, for other effects (e.g. anticonvulsant properties) Delta9THC, although active, might not be necessary for the observed effect. Above all, these results demonstrated that not all of the therapeutic actions of cannabis herb might be due to the Delta9THC content.”

http://www.ncbi.nlm.nih.gov/pubmed/14738597

Cannabis drug ‘fights pain without high’

   “Scientists have developed a cannabis-based medicine which relieves chronic pain without any of the “high” normally associated with the drug.

They believe the discovery could pave the way for cannabis-based medication to become available by prescription within two years.

Much of the controversy surrounding the medicinal use of cannabis has centred on fears that it would be used solely for its mood-altering effects.

However, scientists at the University of Massachusetts in the United States say their discovery should help authorities to overcome these fears.

Dr Sumner Burstein and colleagues say early trials of the medication in animals and healthy patients have been promising.

The medication, called ajulemic acid or CT3, has been manufactured in laboratories.

It maximises the medicinal effects of tertrahydrocannabinol – the key ingredient of cannabis – without any of the mind-altering effects.

‘More effective’

In animal tests, this compound was found to be between 10 to 50 times more effective at reducing pain than tetrahydrocannabinol.

Those tests showed that ajulemic acid was very effective at preventing the joint damage associated with arthritis and relieving the muscle stiffness associated with multiple sclerosis.”

Read more: http://news.bbc.co.uk/2/hi/health/2207478.stm

Ajulemic acid: A novel cannabinoid produces analgesia without a “high”.

Abstract

   “A long-standing goal in cannabinoid research has been the discovery of potent synthetic analogs of the natural substances that might be developed as clinically useful drugs. This requires, among other things, that they be free of the psychotropic effects that characterize the recreational use of Cannabis. An important driving force for this goal is the long history of the use of Cannabis as a medicinal agent especially in the treatment of pain and inflammation. While few compounds appear to have these properties, ajulemic acid (AJA), also known as CT-3 and IP-751, is a potential candidate that could achieve this goal. Its chemical structure was derived from that of the major metabolite of Delta9-THC, the principal psychotropic constituent of Cannabis. In preclinical studies it displayed many of the properties of non-steroidal anti-inflammatory drugs (NSAIDs); however, it seems to be free of undesirable side effects. The initial short-term trials in healthy human subjects, as well as in patients with chronic neuropathic pain, demonstrated a complete absence of psychotropic actions. Moreover, it proved to be more effective than placebo in reducing this type of pain as measured by the visual analog scale. Unlike the narcotic analgesics, signs of dependency were not observed after withdrawal of the drug at the end of the one-week treatment period. Data on its mechanism of action are not yet complete; however, the activation of PPAR-gamma, and regulation of eicosanoid and cytokine production, appear to be important for its potential therapeutic effects.”

http://www.ncbi.nlm.nih.gov/pubmed/15240185

Prospects for cannabinoids as anti-inflammatory agents.

Abstract

“The marijuana plant (Cannabis sativa) and preparations derived from it have been used for medicinal purposes for thousands of years. It is likely that the therapeutic benefits of smoked marijuana are due to some combination of its more than 60 cannabinoids and 200-250 non-cannabinoid constituents. Several marijuana constituents, the carboxylic acid metabolites of tetrahydrocannabinol, and synthetic analogs are free of cannabimimetic central nervous system activity, do not produce behavioral changes in humans, and are effective antiinflammatory and analgesic agents. One cannabinoid acid in particular, ajulemic acid, has been studied extensively in in vitro systems and animal models of inflammation and immune responses. This commentary reviews a portion of the work done by investigators interested in separating the medicinal properties of marijuana from its psychoactive effects. Understanding the mechanisms of the therapeutic effects of nonpsychoactive cannabinoids should lead to development of safe effective treatment for several diseases, and may render moot the debate about “medical marijuana”.”

Medicinal use of cannabis: history and current status.

Abstract

“OBJECTIVE:

To provide an overview of the history and pharmacology of cannabis in relation to current scientific knowledge concerning actual and potential therapeutic uses of cannabis preparations and pure cannabinoids.

METHODS:

The literature on therapeutic uses of cannabis and cannabinoids was assessed with respect to type of study design, quality and variability of data, independent replications by the same or other investigators, magnitude of effects, comparison with other available treatments and reported adverse effects. The results of this review were also compared with those of major international reviews of this topic in the past five years.

CONCLUSIONS:

Pure tetrahydrocannabinol and several analogues have shown significant therapeutic benefits in the relief of nausea and vomiting, and stimulation of appetite in patients with wasting syndrome. Recent evidence clearly demonstrates analgesic and anti-spasticity effects that will probably prove to be clinically useful. Reduction of intraocular pressure in glaucoma and bronchodilation in asthma are not sufficiently strong, long lasting or reliable to provide a valid basis for therapeutic use. The anticonvulsant effect of cannabidiol is sufficiently promising to warrant further properly designed clinical trials. There is still a major lack of long term pharmacokinetic data and information on drug interactions. For all the present and probable future uses, pure cannabinoids, administered orally, rectally or parenterally, have been shown to be effective, and they are free of the risks of chronic inflammatory disease of the airways and upper respiratory cancer that are associated with the smoking of crude cannabis. Smoking might be justified on compassionate grounds in terminally ill patients who are already accustomed to using cannabis in this manner. Future research will probably yield new synthetic analogues with better separation of therapeutic effects from undesired psychoactivity and other side effects, and with solubility properties that may permit topical administration in the eye, or aerosol inhalation for rapid systemic effect without the risks associated with smoke inhalation.”

http://www.ncbi.nlm.nih.gov/pubmed/11854770

[Potential therapeutic usefulness of cannabis and cannabinoids].

Abstract

“Diseases in which Cannabis and cannabinoids have demonstrated some medicinal putative properties are: nausea and vomiting associated with cancer chemotherapy, muscle spasticity (multiple sclerosis, movement disorders), pain, anorexia, epilepsy, glaucoma, bronchial asthma, neuroegenerative diseases, cancer, etc. Although some of the current data comes from clinical controlled essays, the majority are based on anecdotic reports. Basic pharmacokinetic and pharmacodynamic studies and more extensive controlled clinical essays with higher number of patients and long term studies are necessary to consider these compounds useful since a therapeutical point of view.”

http://www.ncbi.nlm.nih.gov/pubmed/11205042

Recent developments in the therapeutic potential of cannabinoids.

Abstract

“OBJECTIVE:

To examine the recent evidence that marijuana and other cannabinoids have therapeutic potential.

METHODS:

Literature published since 1997 was searched using the following terms: cannabinoid, marijuana, THC, analgesia, cachexia, glaucoma, movement, multiple sclerosis, neurological, pain, Parkinson, trial, vomiting. Qualifying clinical studies were randomized, double-blind, and placebo-controlled. Selected open-label studies and surveys are also discussed.

RESULTS:

A total of 15 independent, qualifying clinical trials were identified, of which only three had more than 100 patients each. Two large trials found that cannabinoids were significantly better than placebo in managing spasticity in multiple sclerosis. Patients self-reported greater sense of motor improvement in multiple sclerosis than could be confirmed objectively. In smaller qualifying trials, cannabinoids produced significant objective improvement of tics in Tourette’s disease, and neuropathic pain. A new, non-psychotropic cannabinoid also has analgesic activity in neuropathic pain. No significant improvement was found in levodopa-induced dyskinesia in Parkinson’s Disease or post-operative pain. No difference from active placebo was found for management of cachexia in a large trial. Some immune system parameters changed in HIV-1 and multiple sclerosis patients treated with cannabinoids, but the clinical significance is unknown. Quality of life assessments were made in only three of 15 qualifying clinical trials.

CONCLUSION:

Cannabinoids may be useful for conditions that currently lack effective treatment, such as spasticity, tics and neuropathic pain. New delivery systems for cannabinoids and cannabis-based medicinal extracts, as well as new cannabinoid derivatives expand the options for cannabinoid therapy. More well-controlled, large clinical tests are needed, especially with active placebo.”

http://www.ncbi.nlm.nih.gov/pubmed/15895873

Human studies of cannabinoids and medicinal cannabis.

Abstract

“Cannabis has been known as a medicine for several thousand years across many cultures. It reached a position of prominence within Western medicine in the nineteenth century but became mired in disrepute and legal controls early in the twentieth century. Despite unremitting world-wide suppression, recreational cannabis exploded into popular culture in the 1960s and has remained easily obtainable on the black market in most countries ever since. This ready availability has allowed many thousands of patients to rediscover the apparent power of the drug to alleviate symptoms of some of the most cruel and refractory diseases known to humankind. Pioneering clinical research in the last quarter of the twentieth century has given some support to these anecdotal reports, but the methodological challenges to human research involving a pariah drug are formidable. Studies have tended to be small, imperfectly controlled, and have often incorporated unsatisfactory synthetic cannabinoid analogues or smoked herbal material of uncertain composition and irregular bioavailability. As a result, the scientific evaluation of medicinal cannabis in humans is still in its infancy. New possibilities in human research have been opened up by the discovery of the endocannabinoid system, a rapidly expanding knowledge of cannabinoid pharmacology, and a more sympathetic political environment in several countries. More and more scientists and clinicians are becoming interested in exploring the potential of cannabis-based medicines. Future targets will extend beyond symptom relief into disease modification, and already cannabinoids seem to offer particular promise in the treatment of certain inflammatory and neurodegenerative conditions. This chapter will begin with an outline of the development and current status of legal controls pertaining to cannabis, following which the existing human research will be reviewed. Some key safety issues will then be considered, and the chapter will conclude with some suggestions as to future directions for human research.”

http://www.ncbi.nlm.nih.gov/pubmed/16596794

Therapeutic aspects of cannabis and cannabinoids

The British Journal of Psychiatry

“HISTORY OF THERAPEUTIC USE

The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”

“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”

“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”

“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”

“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”

“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”

http://bjp.rcpsych.org/content/178/2/107.long