Pharmacokinetics and pharmacodynamics of cannabinoids.

Abstract

“Delta(9)-Tetrahydrocannabinol (THC) is the main source of the pharmacological effects caused by the consumption of cannabis, both the marijuana-like action and the medicinal benefits of the plant. However, its acid metabolite THC-COOH, the non-psychotropic cannabidiol (CBD), several cannabinoid analogues and newly discovered modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoids exert many effects through activation of G-protein-coupled cannabinoid receptors in the brain and peripheral tissues. Additionally, there is evidence for non-receptor-dependent mechanisms. Natural cannabis products and single cannabinoids are usually inhaled or taken orally; the rectal route, sublingual administration, transdermal delivery, eye drops and aerosols have only been used in a few studies and are of little relevance in practice today. The pharmacokinetics of THC vary as a function of its route of administration. Pulmonary assimilation of inhaled THC causes a maximum plasma concentration within minutes, psychotropic effects start within seconds to a few minutes, reach a maximum after 15-30 minutes, and taper off within 2-3 hours. Following oral ingestion, psychotropic effects set in with a delay of 30-90 minutes, reach their maximum after 2-3 hours and last for about 4-12 hours, depending on dose and specific effect. At doses exceeding the psychotropic threshold, ingestion of cannabis usually causes enhanced well-being and relaxation with an intensification of ordinary sensory experiences. The most important acute adverse effects caused by overdosing are anxiety and panic attacks, and with regard to somatic effects increased heart rate and changes in blood pressure. Regular use of cannabis may lead to dependency and to a mild withdrawal syndrome. The existence and the intensity of possible long-term adverse effects on psyche and cognition, immune system, fertility and pregnancy remain controversial. They are reported to be low in humans and do not preclude legitimate therapeutic use of cannabis-based drugs. Properties of cannabis that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, sedation, improvement of mood, stimulation of appetite, antiemesis, lowering of intraocular pressure, bronchodilation, neuroprotection and induction of apoptosis in cancer cells.”

http://www.ncbi.nlm.nih.gov/pubmed/12648025

Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects

“The roots of cannabis synergy.”

“Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL−1. They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant.”

“Cannabis has been a medicinal plant of unparalleled versatility for millennia, but whose mechanisms of action were an unsolved mystery until the discovery of tetrahydrocannabinol (THC), the first cannabinoid receptor, CB1, and the endocannabinoids, anandamide (arachidonoylethanolamide, AEA) and 2-arachidonoylglycerol (2-AG). While a host of phytocannabinoids were discovered in the 1960s: cannabidiol (CBD), cannabigerol (CBG), cannabichromene (CBC) (Gaoni and Mechoulam, cannabidivarin (CBDV) and tetrahydrocannabivarin (THCV), the overwhelming preponderance of research focused on psychoactive THC. Only recently has renewed interest been manifest in THC analogues, while other key components of the activity of cannabis and its extracts, the cannabis terpenoids, remain understudied. The current review will reconsider essential oil (EO) agents, their peculiar pharmacology and possible therapeutic interactions with phytocannabinoids.”

“Should positive outcomes result from such studies, phytopharmaceutical development may follow. The development of zero-cannabinoid cannabis chemotypes has provided extracts that will facilitate discernment of the pharmacological effects and contributions of different fractions. Breeding work has already resulted in chemotypes that produce 97% of monoterpenoid content as myrcene, or 77% as limonene (E. de Meijer, pers. comm.). Selective cross-breeding of high-terpenoid- and high-phytocannabinoid-specific chemotypes has thus become a rational target that may lead to novel approaches to such disorders as treatment-resistant depression, anxiety, drug dependency, dementia and a panoply of dermatological disorders, as well as industrial applications as safer pesticides and antiseptics. A better future via cannabis phytochemistry may be an achievable goal through further research of the entourage effect in this versatile plant that may help it fulfil its promise as a pharmacological treasure trove.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165946/

Plant, synthetic, and endogenous cannabinoids in medicine.

Abstract

“Although used for more than 4000 years for recreational and medicinal purposes, Cannabis and its best-known pharmacologically active constituents, the cannabinoids, became a protagonist in medical research only recently. This revival of interest is explained by the finding in the 1990s of the mechanism of action of the main psychotropic cannabinoid, Delta9-tetrahydrocannabinol (THC), which acts through specific membrane receptors, the cannabinoid receptors. The molecular characterization of these receptors allowed the development of synthetic molecules with cannabinoid and noncannabinoid structure and with higher selectivity, metabolic stability, and efficacy than THC, as well as the development of antagonists that have already found pharmaceutical application. The finding of endogenous agonists at these receptors, the endocannabinoids, opened new therapeutic possibilities through the modulation of the activity of cannabinoid receptors by targeting the biochemical mechanisms controlling endocannabinoid tissue levels.”

http://www.ncbi.nlm.nih.gov/pubmed/16409166

Cannabinoids in health and disease

Abstract

“Cannabis sativa L. preparations have been used in medicine for millenia. However, concern over the dangers of abuse led to the banning of the medicinal use of marijuana in most countries in the 1930s. Only recently, marijuana and individual natural and synthetic cannabinoid receptor agonists and antagonists, as well as chemically related compounds, whose mechanism of action is still obscure, have come back to being considered of therapeutic value. However, their use is highly restricted. Despite the mild addiction to cannabis and the possible enhancement of addiction to other substances of abuse, when combined with cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases, such as anorexia, emesis, pain, inflammation, multiple sclerosis, neurodegenerative disorders (Parkinson’s disease, Huntington’s disease, Tourette’s syndrome, Alzheimer’s disease), epilepsy, glaucoma, osteoporosis, schizophrenia, cardiovascular disorders, cancer, obesity, and metabolic syndrome-related disorders, to name just a few, are being treated or have the potential to be treated by cannabinoid agonists/antagonists/cannabinoid-related compounds. In view of the very low toxicity and the generally benign side effects of this group of compounds, neglecting or denying their clinical potential is unacceptable – instead, we need to work on the development of more selective cannabinoid receptor agonists/antagonists and related compounds, as well as on novel drugs of this family with better selectivity, distribution patterns, and pharmacokinetics, and – in cases where it is impossible to separate the desired clinical action and the psychoactivity – just to monitor these side effects carefully.”

Cancer

“The antiproliferative action of cannabinoids on cancer cells was first noticed in the 1970s. Since then cannabinoids were found to act on various cancer cell lines, through various mechanisms. Cannabinoids were also found to be suppressors of angiogenesis and tumor invasion. Our knowledge on the anticancer activity of cannabinoids is rapidly expanding.”

Conclusion

“Many drugs used today can cause addiction and are misused and abused, for example opiates, cocaine, benzodiazepines, barbiturates, cholinergic agonists, ketamine, dopaminergic agonists, amphetamines, and others. Nevertheless they are still an important part of our pharmacopeia. Marijuana was used for centuries as a medicinal plant, but during the last century, because of its abuse and addictive potential it was taken out of clinical practice. Now, we believe that its constituents and related compounds should be brought back to clinical use. The reasons are: (i) the therapeutic potential of CB1 agonists is huge, as described in this review; (ii) for local action, topical CB1 agonists, or agonists that do not penetrate the blood-brain barrier, can be used; (iii) cannabinoids acting specifically on CB2 receptors, which cause no psychoactivity, may be used on peripheral targets (such as osteoporosis, which is only one of many examples); (iv) there are additional, new cannabinoid targets distinct from the CB1/CB2 receptors which do not cause psychoactivity; (v) there are cannabinoids, such as CBD, which do not cause psychoactivity, but have various therapeutic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202504/

Marijuana: A cure for breast cancer

“Cannabis, or rather marijuana, has been known as an illegal drug that is used primarily to get “high” and has no other value. This is what many people have thought of marijuana for at least the last 75 years.

Over the years, numerous research studies have been conducted on cannabis and there were discussions about its medicinal benefits for cancer treatment; however, because this is an illegal drug, much of the research hasn’t been known to the average citizen.

Within the last 10-15 years, the interest in cannabis as a possible cure for cancer has increased substantially. In addition, there has been an increase in citizens demanding the ability to use medicinal cannabis as a treatment for their disease or illness.

These recent studies have shown that cannabis may be a cure for cancer.  One study
conducted in 2007 by the California Pacific Medical Center in San Francisco, CA determined that a compound in cannabis called “Cannabidiol” was effective at inhibiting aggressive breast cancers. It was discovered that a certain “key gene caused breast cancer to spread and that cannabidiol could inhibit that aggressive gene by stopping the spread of the tumor cells”.  This study was published in the Washington Post and Science Daily
as well.

Unfortunately, cannabis is a schedule 1 drug which means that additional research and FDA approval would be required for cannabis to be used for the treatment of cancer.  It would require the removal of cannabis as a schedule 1 drug.

There is information that may suggest the U.S. Government and the Drug Enforcement Agency (DEA) may have already known about the benefits of cannabis to treat cancer. The National Cancer Institute published a study in 1974. Due to federal law, no further studies were conducted until the 1990’s. All research conducted since then has been via test tube and animal studies.

In an October 2003 review on test tube and animal research indicated that cannabinoids inhibit tumors of the lung, uterus, skin, breast, prostate, and brain. Cannabis is also known to provide nausea relief to cancer patients and to increase appetite.

Medicinal cannabis may be the cure for cancer. Additional research is needed; however, it may require reclassifying cannabis in order to obtain government approval.”

http://www.examiner.com/article/marijuana-a-cure-for-breast-cancer

Why Cannabis Stems Inflammation

“Cannabis has long been accredited with anti-inflammatory properties. ETH Zurich researchers, however, have now discovered that it is not only the familiar psychoactive substances that are responsible for this; a compound we take in every day in vegetable nutriment also plays a significant role.

People not only rate cannabis sativa L. highly because of its intoxicating effects; it has also long been used as a medicinal plant. Although the plant has been scrutinized for years, surprising new aspects keep cropping up. For example, researchers from ETH Zurich and Bonn University examined a component in the plant’s essential oil that until then had largely been ignored and found it to have remarkable phar- macological effects. The findings open up interesting perspectives, especially for the prevention and treatment of inflammations.

The hemp plant contains over 450 different substances, only three of which are responsible for its intoxicating effect. They activate the two receptors in the body CB1 and CB2. Whilst the CB1 receptor in the central nervous system influences perception, the CB2 receptor in the tissue plays a crucial role in inhibiting inflammation. If the receptor is activated, the cell releases fewer pro-inflammatory signal substances, or cytokines. The scientists have now discovered that the substance beta-carophyllene, which composes between 12 and 35 percent of the cannabis plant’s essential oil, activates the CB2 receptor selectively.”

http://www.sciencedaily.com/releases/2008/07/080720222549.htm

Cannabinoid drugs and enhancement of endocannabinoid responses: strategies for a wide array of disease states.

Abstract

“The endogenous cannabinoid system has revealed potential avenues to treat many disease states. Medicinal indications of cannabinoid drugs including compounds that result in enhanced endocannabinoid responses (EER) have expanded markedly in recent years. The wide range of indications covers chemotherapy complications, tumor growth, addiction, pain, multiple sclerosis, glaucoma, inflammation, eating disorders, age-related neurodegenerative disorders, as well as epileptic seizures, traumatic brain injury, cerebral ischemia, and other excitotoxic insults. Indeed, a great effort has led to the discovery of agents that selectively activate the cannabinoid system or that enhance the endogenous pathways of cannabinergic signaling. The endocannabinoid system is comprised of three primary components: (i) cannabinoid receptors, (ii) endocannabinoid transport system, and (iii) hydrolysis enzymes that break down the endogenous ligands. Two known endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are lipid molecules that are greatly elevated in response to a variety of pathological events. This increase in endocannabinoid levels is suggested to be part of an on-demand compensatory response. Furthermore, activation of signaling pathways mediated by the endogenous cannabinoid system promotes repair and cell survival. Similar cell maintenance effects are elicited by EER through inhibitors of the endocannabinoid deactivation processes (i.e., internalization and hydrolysis). The therapeutic potential of the endocannabinoid system has yet to be fully determined, and the number of medical maladies that may be treated will likely continue to grow. This review will underline studies that demonstrate medicinal applications for agents that influence the endocannabinoid system.”

http://www.ncbi.nlm.nih.gov/pubmed/17022737

Cannabis Science Updates Cancer Patient Progress As It Receives Verbal Confirmation By A Physician That Both Sites Of The Former Lesions Are Free Of Cancer Cells; Official Physician Documentation To Follow

“Cannabis Science, Inc. a pioneering U.S. biotech company developing pharmaceutical cannabis (marijuana derivative) products, is pleased to announce that we have now received verbal confirmation that the sites of the former cancerous lesions are free of cancer cells and we are now awaiting official Physician documentation of the patient’s history and biopsy reports.

Dr. Robert J. Melamede, the CEO and President of Cannabis Science Inc., stated, “The photographic documentation in our last press release, demonstrated that cannabis extracts appeared to be effective against what seems to be the patient’s third incidence of basal cell carcinoma. For accuracy, it should be noted that a before treatment biopsy of the lesion on the nose was not been performed. It is obvious that there was a lesion-centered response to the application of the cannabis extract. This patient had a previous surgically removed lesion, as well as a biopsied basal cell carcinoma on the right cheek. The lesion on the cheek was also self-treated and resolved with cannabis extracts over a half year ago. This deeper cheek lesion did not visually respond like the lesion on the nose, hence there is no photographic record.”

Cannabis Science is committed to making cannabis-based medicines available to the public as rapidly as possible. The Company is taking multiple approaches to accomplishing this aim in the United States. The science of cannabinoids has exploded over the past decade, laying the scientific foundation for the many medicinal uses of this unique plant. Cannabinoids are a class of biologically active compounds produced by all vertebrates, the Cannabis plant, and more recently patentable synthetic compounds produced by chemists. In fact, modern peer-reviewed science supports the many historical uses that were discovered over thousands of years of medicinal use by herbalists.”

More: http://www.businesswire.com/news/home/20110309006171/en/Cannabis-Science-Updates-Cancer-Patient-Progress-Receives