The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ9-tetrahydrocannabinol acting through CB1 receptors.

“Sativex®, an equimolecular combination of Δ9-tetrahydrocannabinol-botanical drug substance (Δ9-THC-BDS) and cannabidiol-botanical drug substance (CBD-BDS), is a licensed medicine that may be prescribed for alleviating specific symptoms of multiple sclerosis (MS) such as spasticity and pain.

However, further evidence suggest that it could be also active as disease-modifying therapy given the immunomodulatory, anti-inflammatory and cytoprotective properties of their two major components.

In this study, we investigated this potential in the experimental autoimmune encephalitis (EAE) model of MS in mice.

We compared the effect of a Sativex-like combination of Δ9-THC-BDS (10mg/kg) and CBD-BDS (10mg/kg) with Δ9-THC-BDS (20mg/kg) or CBD-BDS (20mg/kg) administered separately by intraperitoneal administration to EAE mice.

Treatments were initiated at the time that symptoms appear and continued up to the first relapse of the disease.

The results show that the treatment with a Sativex-like combination significantly improved the neurological deficits typical of EAE mice, in parallel with a reduction in the number and extent of cell aggregates present in the spinal cord which derived from cell infiltration to the CNS.

These effects were completely reproduced by the treatment with Δ9-THC-BDS alone, but not by CBD-BDS alone which only delayed the onset of the disease without improving disease progression and reducing the cell infiltrates in the spinal cord.

Next, we investigated the potential targets involved in the effects of Δ9-THC-BDS by selectively blocking CB1 or PPAR-γ receptors, and we found a complete reversion of neurological benefits and the reduction in cell aggregates only with rimonabant, a selective CB1 receptor antagonist.

Collectively, our data support the therapeutic potential of Sativex as a phytocannabinoid formulation capable of attenuating EAE progression, and that the active compound was Δ9-THC-BDS acting through CB1 receptors.”

Plant derived substances with anti-cancer activity: from folklore to practice.

“Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years.

It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century.

This trend led to the discovery of different active compounds that are derived from plants.

In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity.

Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities.

Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids.

In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.”

http://www.ncbi.nlm.nih.gov/pubmed/26483815

http://journal.frontiersin.org/article/10.3389/fpls.2015.00799/full

Polypharmacology Shakes Hands with Complex Aetiopathology.

“Chronic diseases are due to deviations of fundamental physiological systems, with different pathologies being characterised by similar malfunctioning biological networks.

The ensuing compensatory mechanisms may weaken the body’s dynamic ability to respond to further insults and reduce the efficacy of conventional single target treatments.

The multitarget, systemic, and prohomeostatic actions emerging for plant cannabinoids exemplify what might be needed for future medicines.

Indeed, two combined cannabis extracts were approved as a single medicine (Sativex®), while pure cannabidiol, a multitarget cannabinoid, is emerging as a treatment for paediatric drug-resistant epilepsy.

Using emerging cannabinoid medicines as an example, we revisit the concept of polypharmacology and describe a new empirical model, the ‘therapeutic handshake’, to predict efficacy/safety of compound combinations of either natural or synthetic origin.”

http://www.ncbi.nlm.nih.gov/pubmed/26434643

[Cannabis – therapy for the future?]

“Despite all the progress achieved in the treatment of chronic gastrointestinal diseases, in some patients the treatment does not reach long-term optimum effectiveness. Therefore a number of patients have turned to complementary and alternative medicine (CAM).

Of the different types of CAM patients with GIT diseases tend to prefer in particular homeopathy, acupuncture and not least phytotherapy, where therapeutic use of cannabis may also be included.

The pathophysiological basis of therapeutic effect of curative cannabis has not been fully clarified so far.

Many scientists in many fields of medicine and pharmacology have been engaged in the study of effects of cannabinoids on the body since the beginning of the 20th century with the interest significantly increasing in the 1980s.

The discovery of CB receptors (1988) and endogenous molecules which activate these receptors (1992) led to the discovery of the endocannabinoid system.

Pharmacological modulation of the endogenous cannabinoid system offers new therapeutic possibilities of treatment of many illnesses and symptoms including the GIT disorders, including of nausea, vomiting, cachexia, IBS, Crohns disease and some other disorders.

Cannabinoids are attractive due to their therapeutic potential – they affect a lot of symptoms with minimum side effects.

Experience of patients with GIT disorders show that the use of cannabis is effective and helps in cases where the standard therapy fails.”

http://www.ncbi.nlm.nih.gov/pubmed/26375695

Issues and promise in clinical studies of botanicals with anticonvulsant potential.

“Botanicals are increasingly used by people with epilepsy worldwide. However, despite abundant preclinical data on the anticonvulsant properties of many herbal remedies, there are very few human studies assessing safety and efficacy of these products in epilepsy.Additionally, the methodology of most of these studies only marginally meets the requirements of evidence-based medicine.

Although the currently available evidence for the use of cannabinoids in epilepsy is similarly lacking, several carefully designed and well controlled industry-sponsored clinical trials of cannabis derivatives are planned to be completed in the next couple of years, providing the needed reliable data for the use of these products.

The choice of the best botanical candidates with anticonvulsant properties and their assessment in well-designed clinical trials may significantly improve our ability to effectively and safely treat patients with epilepsy. ”

http://www.ncbi.nlm.nih.gov/pubmed/26341963

http://www.thctotalhealthcare.com/category/epilepsy-2/

The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells.

“One of the most exciting areas of current research in the cannabinoid field is the study of the potential application of these compounds as antitumoral drugs. Here, we describe the signaling pathway that mediates cannabinoid-induced apoptosis of tumor cells. By using a wide array of experimental approaches, we identify the stress-regulated protein p8 (also designated as candidate of metastasis 1) as an essential mediator of cannabinoid antitumoral action and show that p8 upregulation is dependent on de novo-synthesized ceramide. We also observe that p8 mediates its apoptotic effect via upregulation of the endoplasmic reticulum stress-related genes ATF-4, CHOP, and TRB3. Activation of this pathway may constitute a potential therapeutic strategy for inhibiting tumor growth.”

http://www.ncbi.nlm.nih.gov/pubmed/16616335

“Marijuana has been used in medicine for many centuries, and nowadays there is a renaissance in the study of the therapeutic effects of cannabinoids. One of the most active areas of research in the cannabinoid field is the study of the potential antitumoral application of these drugs. Our results unravel the mechanism of cannabinoid antitumoral action by demonstrating the proapoptotic role of the stress protein p8 via its downstream targets ATF-4, CHOP, and TRB3.

The identification of this pathway may contribute to the design of therapeutic strategies for inhibiting tumor growth. In particular, our findings can help to improve the efficiency and selectivity of potential antitumoral therapies with cannabinoids.

Our results also support that cannabinoid treatment does not activate this pathway in nontransformed cells, in line with the belief that cannabinoid proapoptotic action is selective for tumor versus nontumor cells, and that cannabinoids act in a synergic fashion with ER stress inducers as well as with other antitumoral agents.

The identification of the p8-regulated pathway described here may contribute to the design of therapeutic strategies for inhibiting tumor growth. In particular, our findings can help to improve the efficiency and selectivity of a potential cannabinoid-based antitumoral therapy.”

http://www.sciencedirect.com/science/article/pii/S1535610806000857

Medical Marijuana: Reducing Spasticity in Multiple Sclerosis Patients

 

“Medical marijuana is a justifiable treatment for spasticity in patients with MS.

Interviews indicate that many patients choose marijuana over other medicines because they experience minimal side effects and rapid improvements in motor functioning…

Compared to the steroids, tranquilizers, and sedatives usually prescribed for MS patients, marijuana is remarkably safe and benign…

There is a lack of evidence for long-term risks associated with marijuana use. The short-term risks are minimal and short-lived.

Studies verify the positive relationship between medical marijuana use and reduced spasticity.

Voters are realizing the cruelty associated with robbing a terminally or chronically ill patient from the medicine that most relieves their pain.

MS is a chronic disease that can lead to severe pain and disability if untreated. For these reasons, medical marijuana should be available to patients who understand the risks associated with its use.

Until medical research develops an equally effective oral drug, marijuana will remain a reasonable option for patients suffering from MS.”

http://www.vanderbilt.edu/AnS/psychology/health_psychology/medicalmarijuana.htm

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/

The Genetic Structure of Marijuana and Hemp.

“Despite its cultivation as a source of food, fibre and medicine, and its global status as the most used illicit drug, the genus Cannabis has an inconclusive taxonomic organization and evolutionary history.

Drug types of Cannabis (marijuana), which contain high amounts of the psychoactivecannabinoid Δ9-tetrahydrocannabinol (THC), are used for medical purposes and as a recreational drug.

Hemp types are grown for the production of seed and fibre, and contain low amounts of THC.

Two species or gene pools (C. sativa and C. indica) are widely used in describing the pedigree or appearance of cultivated Cannabis plants.

Using 14,031 single-nucleotide polymorphisms (SNPs) genotyped in 81 marijuana and 43 hemp samples, we show that marijuana and hemp are significantly differentiated at a genome-wide level, demonstrating that the distinction between these populations is not limited to genes underlying THC production.

We find a moderate correlation between the genetic structure of marijuana strains and their reported C. sativa and C. indica ancestry and show that marijuana strain names often do not reflect a meaningful genetic identity.

We also provide evidence that hemp is genetically more similar to C. indica type marijuana than to C. sativa strains.”

http://www.ncbi.nlm.nih.gov/pubmed/26308334

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133292

“WILD CANNABIS”: A REVIEW OF THE TRADITIONAL USE AND PHYTOCHEMISTRY OF LEONOTIS LEONURUS.

“Leonotis leonurus, locally commonly known as “wilde dagga” (=wild cannabis), is traditionally used as a decoction, both topically and orally, in the treatment of a wide variety of conditions such as haemorrhoids, eczema, skin rashes, boils, itching, muscular cramps, headache, epilepsy, chest infections, constipation, spider and snake bites. The dried leaves and flowers are also smoked to relieve epilepsy. The leaves and flowers are reported to produce a mild euphoric effect when smoked and have been said to have a similar, although less potent, psychoactive effect to cannabis.

The phytochemistry of particularly the non-volatile constituents of Leonotis leonurus has been comprehensively investigated due to interest generated as a result of the wide variety of biological effects reported for this plant. More than 50 compounds have been isolated and characterised. Leonotis leonurus contains mainly terpenoids, particularly labdane diterpenes, the major diterpene reported is marrubiin. Various other compounds have been reported by some authors to have been isolated from the plant, including, in the popular literature only, the mildly psychoactive alkaloid, leonurine. Leonurine has however, never been reported by any scientific analysis of the extracts of L. leonurus.

Despite the publication of various papers on L. leonurus, there is still, however, the need for definitive research and clarification of other compounds, including alkaloids and essential oils from L. leonurus, as well as from other plant parts, such as the roots which are extensively used in traditional medicine. The traditional use by smoking also requires further investigation as to how the chemistry and activity are affected by this form of administration. Research has proven the psychoactive effects of the crude extract of L. leonurus, but confirmation of the presence of psychoactive compounds, as well as isolation and characterisation, is still required. Deliberate adulteration of L. leonurus with synthetic cannabinoids has been reported recently, in an attempt to facilitate the marketing of these illegal substances, highlighting the necessity for refinement of appropriate quality control processes to ensure safety and quality. Much work is therefore still required on the aspect of quality control to ensure safety, quality and efficacy of the product supplied to patients, as this plant is widely used in South Africa as a traditional medicine. Commercially available plant sources provide a viable option for phytochemical research, particularly with regard to the appropriate validation of the plant material (taxonomy) in order to identify and delimit closely related species such as L. leonurus and L. nepetifolia which are very similar in habit.”

http://www.ncbi.nlm.nih.gov/pubmed/26292023

Cannabinoids for the Treatment of Agitation and Aggression in Alzheimer’s Disease.

“Alzheimer’s disease (AD) is frequently associated with neuropsychiatric symptoms (NPS) such as agitation and aggression, especially in the moderate to severe stages of the illness. The limited efficacy and high-risk profiles of current pharmacotherapies for the management of agitation and aggression in AD have driven the search for safer pharmacological alternatives.

Over the past few years, there has been a growing interest in the therapeutic potential of medications that target the endocannabinoid system (ECS).

The behavioural effects of ECS medications, as well as their ability to modulate neuroinflammation and oxidative stress, make targeting this system potentially relevant in AD.

This article summarizes the literature to date supporting this rationale and evaluates clinical studies investigating cannabinoids for agitation and aggression in AD.

Letters, case studies, and controlled trials from four electronic databases were included. While findings from six studies showed significant benefits from synthetic cannabinoids-dronabinol or nabilone-on agitation and aggression, definitive conclusions were limited by small sample sizes, short trial duration, and lack of placebo control in some of these studies.

Given the relevance and findings to date, methodologically rigorous prospective clinical trials are recommended to determine the safety and efficacy of cannabinoids for the treatment of agitation and aggression in dementia and AD.”