Practical use of pharmaceutically purified oral cannabidiol in Dravet syndrome and Lennox-Gastaut syndrome

Publication Cover “Pharmaceutically purified oral cannabidiol (CBD) has been recently approved by the US Food and Drug Administration and European Medicines Agency as treatment of seizures associated with Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS), which are severe and difficult-to-treat developmental and epileptic encephalopathies with onset in early childhood.

Areas covered: This review will critically review the pharmacokinetic properties of CBD, the interactions with antiseizure and non-antiseizure medications, and the main tolerability and safety issues to provide guidance for its use in everyday practice.

Expert opinion: CBD is metabolized in the liver and can influence the activity of enzymes involved in drug metabolism. The best characterized drug-drug interaction is between CBD and clobazam. The most common adverse events include somnolence, gastrointestinal discomfort and increase in serum transaminases.

High-grade purified CBD oral solution represents an effective therapeutic option in patients with DS and LGS.

The findings cannot be extrapolated to other cannabis-based products, synthetic cannabinoids for medicinal use and non-medicinal cannabis and CBD derivatives.”

https://pubmed.ncbi.nlm.nih.gov/33026899/

“Pharmaceutically purified oral cannabidiol (CBD) is approved for treatment of seizures associated with Dravet syndrome and Lennox-Gastaut syndrome.”

https://www.tandfonline.com/doi/abs/10.1080/14737175.2021.1834383?journalCode=iern20

Development of cannabidiol as a treatment for severe childhood epilepsies

“In recent years there has been a growing appreciation by regulatory authorities that cannabis-based medicines can play a useful role in disease therapy.

Although often conflagrated by proponents of recreational use, the legislative rescheduling of cannabis-derived compounds, such as cannabidiol (CBD), has been associated with the steady increase in the pursuit of use of medicinal cannabis.

One key driver in this interest has been the scientific demonstration of efficacy and safety of CBD in randomised, placebo-controlled clinical trials in children and young adults with difficult-to-treat epilepsies, which has encouraged increasing numbers of human trials of CBD for other indications and in other populations.

The introduction of CBD as the medicine Epidiolex in the US (in 2018) and as Epidyolex in the EU (in 2019) as the first cannabis-derived therapeutic for the treatment for seizures was underpinned by preclinical research performed at the University of Reading.

This work was awarded the British Pharmacological Society Sir James Black Award for Contributions to Drug Discovery 2019 and is discussed in the following review article.”

https://pubmed.ncbi.nlm.nih.gov/32986848/

https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.15274

No Evidence of Altered Reactivity to Experimentally Induced Pain Among Regular Cannabis Users

Clinical Journal of Pain,Philadelphia - Gainbuzz“Recent years have seen an increase in the adoption of cannabinoid medicines, which have demonstrated effectiveness for the treatment of chronic pain.

However, the extent to which frequent cannabis use (CU) influences sensitivity to acute pain has not been systematically examined. Such a determination is clinically relevant in light of hypersensitivity to pain associated with prolonged use of other analgesics such as opioids, and reports of increased pain sensitivity to experimentally induced pain during acute cannabis intoxication.

This study explored differences in measures of pain intensity and tolerance. The authors hypothesized that individuals who report frequent CU would demonstrate greater experimental pain sensitivity.

Results: Frequent CU was not associated with hyperalgesia as cannabis users and nonusers did not exhibit differences on measures of pain tolerance (t (78)=-0.05; P=0.96), sensitivity (t (78)=-0.83; P=0.41), or intensity (t (78)=0.36; P=0.72).

Discussion: Frequent cannabis users did not demonstrate hyperalgesia. This finding should help to inform evaluations of the relative harms and benefits of cannabis analgesic therapies.”

https://pubmed.ncbi.nlm.nih.gov/32433075/

https://journals.lww.com/clinicalpain/Abstract/2020/08000/No_Evidence_of_Altered_Reactivity_to.4.aspx

“Pain tolerance among cannabis users. Unlike opioids, long-term cannabis use does not increase sensitivity to pain. “This study should come as good news to patients who are already using cannabis to treat pain,” says co-author Zach Walsh, who leads the UBC Therapeutic Recreational and Problematic Substance Use Lab which hosted the study. “Increases in pain sensitivity with opioids can really complicate an already tough situation; given increasing uptake of cannabis-based pain medications it’s a relief that we didn’t identify a similar pattern with cannabinoids.”

https://www.sciencedaily.com/releases/2020/09/200910120105.htm

It Is Our Turn to Get Cannabis High: Put Cannabinoids in Food and Health Baskets

molecules-logo“Cannabis is an annual plant with a long history of use as food, feed, fiber, oil, medicine, and narcotics. Despite realizing its true value, it has not yet found its true place. Cannabis has had a long history with many ups and downs, and now it is our turn to promote it.

Cannabis contains approximately 600 identified and many yet unidentified potentially useful compounds. Cannabinoids, phenolic compounds, terpenoids, and alkaloids are some of the secondary metabolites present in cannabis. However, among a plethora of unique chemical compounds found in this plant, the most important ones are phytocannabinoids (PCs).

Over hundreds of 21-22-carbon compounds exclusively produce in cannabis glandular hairs through either polyketide and or deoxyxylulose phosphate/methylerythritol phosphate (DOXP/MEP) pathways. Trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are those that first come to mind while talking about cannabis. Nevertheless, despite the low concentration, cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabinodiol (CBND), and cannabinidiol (CBDL) may have potentially some medical effects.

PCs and endocannabinoids (ECs) mediate their effects mainly through CB1 and CB2 receptors. Despite all concerns regarding cannabis, nobody can ignore the use of cannabinoids as promising tonic, analgesic, antipyretic, antiemetic, anti-inflammatory, anti-epileptic, anticancer agents, which are effective for pain relief, depression, anxiety, sleep disorders, nausea and vomiting, multiple sclerosis, cardiovascular disorders, and appetite stimulation.

The scientific community and public society have now increasingly accepted cannabis specifically hemp as much more than a recreational drug. There are growing demands for cannabinoids, mainly CBD, with many diverse therapeutic and nutritional properties in veterinary or human medicine. The main objective of this review article is to historically summarize findings concerning cannabinoids, mainly THC and CBD, towards putting these valuable compounds into food, feed and health baskets and current and future trends in the consumption of products derived from cannabis.”

https://pubmed.ncbi.nlm.nih.gov/32899626/

https://www.mdpi.com/1420-3049/25/18/4036

Coronavirus Disease-2019 Treatment Strategies Targeting Interleukin-6 Signaling and Herbal Medicine

View details for OMICS: A Journal of Integrative Biology cover image“Coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is evolving across the world and new treatments are urgently needed as with vaccines to prevent the illness and stem the contagion. The virus affects not only the lungs but also other tissues, thus lending support to the idea that COVID-19 is a systemic disease. The current vaccine and treatment development strategies ought to consider such systems medicine perspectives rather than a narrower focus on the lung infection only.

COVID-19 is associated with elevated levels of the inflammatory cytokines such as interleukin-6 (IL-6), IL-10, and interferon-gamma (IFN-γ). Elevated levels of cytokines and the cytokine storm have been linked to fatal disease. This suggests new therapeutic strategies through blocking the cytokine storm. IL-6 is one of the major cytokines associated with the cytokine storm. IL-6 is also known to display pleiotropic/diverse pathophysiological effects. We suggest the blockage of IL-6 signaling and its downstream mediators such as Janus kinases (JAKs), and signal transducer and activators of transcription (STATs) offer potential hope for the treatment of severe cases of COVID-19. Thus, repurposing of already approved IL-6-JAK-STAT signaling inhibitors as well as other anti-inflammatory drugs, including dexamethasone, is under development for severe COVID-19 cases.

We conclude this expert review by highlighting the potential role of precision herbal medicines, for example, the Cannabis sativa, provided that omics technologies can be utilized to build a robust scientific evidence base on their clinical safety and efficacy. Precision herbal medicine buttressed by omics systems science would also help identify new molecular targets for drug discovery against COVID-19.”

https://pubmed.ncbi.nlm.nih.gov/32857671/

Cannabis sativa is a plant known to contain anti-inflammatory compounds such as cannabinoid cannabidiol. In addition to other compounds such as terpenes, these compounds have been suggested to have potential anticancer properties. Like other herbal plants, we suggest C. sativa warrants further mechanistic research in relationship to putative effects in COVID-19.”

https://www.liebertpub.com/doi/10.1089/omi.2020.0122

Hemp in Veterinary Medicine: From Feed to Drug

 See the source image“Hemp (Cannabis sativa) is an angiosperm plant belonging to the Cannabaceae family. Its cultivation dates back to centuries. It has always been cultivated due to the possibility of exploiting almost all the parts of the plant: paper, fabrics, ropes, bio-compounds with excellent insulating capacity, fuel, biodegradable plastic, antibacterial detergents, and food products, such as flour, oils, seeds, herbal teas, and beer, are indeed obtained from hemp.

Hemp flowers have also always been used for their curative effects, as well as for recreational purposes due to their psychotropic effects. Cannabis contains almost 500 chemical compounds, such as phytocannabinoids, terpenes, flavonoids, amino acids, fatty acids, vitamins, and macro-, and micro-elements, among others.

When utilized as a food source, hemp shows excellent nutritional and health-promoting (nutraceutical) properties, mainly due to the high content in polyunsaturated fatty acids (especially those belonging to the ω-3 series), as well as in phenolic compounds, which seem effective in the prevention of common diseases such as gastrointestinal disorders, neurodegenerative diseases, cancer, and others.

Moreover, hemp oil and other oils (i.e., olive oil and medium-chain triglyceride-MCT-oil) enriched in CBD, as well as extracts from hemp dried flowers (Cannabis extracts), are authorized in some countries for therapeutic purposes as a second-choice approach (when conventional therapies have failed) for a certain number of clinical conditions such as pain and inflammation, epilepsy, anxiety disorders, nausea, emesis, and anorexia, among others.

The present review will synthetize the beneficial properties of hemp and hemp derivatives in animal nutrition and therapeutics.”

https://pubmed.ncbi.nlm.nih.gov/32850997/

C. sativa has been an important source of food in the Old World, as hempseeds and seed meal are excellent sources of dietary oil, fiber, and protein. Many of the constituents of C. sativa can be classified as either nutrients, nutraceuticals, or pharmaceutical ingredients.”

https://www.frontiersin.org/articles/10.3389/fvets.2020.00387/full

Impact of Cannabis-Based Medicine on Alzheimer’s Disease by Focusing on the Amyloid β- Modifications: A Systematic Study

 “Deposition of amyloid-beta (Aβ) peptide in the brain is the leading source of the onset and progression of Alzheimer’s disease (AD). Recent studies have suggested that anti-amyloidogenic agents may be a suitable therapeutic strategy for AD.

Aim: The current review was proposed to address the beneficial effects of cannabis-based drugs for the treatment of AD, focusing primarily on Aβ modifications.

Result: A total of 17 studies were identified based on the inclusion criteria; however, nine studies qualified for this systematic review. The maximum and minimum cannabis dosages, mostly CBD and THC in animal studies, were 0.75 and 50 mg/kg, respectively. Cannabis (CBD and THC) was injected for 10 to 21 days. The findings of the 9 articles indicated that cannabis-based drugs might modulate Aβ modifications in several AD models.

Conclusion: Our findings establish that cannabis-based drugs inhibited the progression of AD by modulating Aβ modifications.”

https://pubmed.ncbi.nlm.nih.gov/32640965/

https://www.eurekaselect.com/183559/article

Cannabis, the Endocannabinoid System and Immunity-the Journey From the Bedside to the Bench and Back

ijms-logo“The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system.

While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited.

A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage.

Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders.

In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.”

https://pubmed.ncbi.nlm.nih.gov/32585801/

https://www.mdpi.com/1422-0067/21/12/4448

Antiemetic Effects of Cannabinoid Agonists in Nonhuman Primates

Journal of Pharmacology and Experimental Therapeutics“Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge.

Although cannabinergic medications have been used in certain treatment-resistant populations, FDA-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications.

The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg), against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys.

These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggests that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side-effect liability.

SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved anti-emetic pharmacotherapies has been impeded by a paucity of animal models.

The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid-analog methanandamide in nonhuman primates.”

https://pubmed.ncbi.nlm.nih.gov/32561684/

http://jpet.aspetjournals.org/content/early/2020/06/19/jpet.120.265710

Targeting the Endocannabinoid System: A Predictive, Preventive, and Personalized Medicine-Directed Approach to the Management of Brain Pathologies

 SpringerLink“Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of “personalized medicine” as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.”

https://pubmed.ncbi.nlm.nih.gov/32549916/

https://link.springer.com/article/10.1007%2Fs13167-020-00203-4