Cannabinoid receptors as novel targets for the treatment of melanoma

“Melanoma causes the greatest number of skin cancer-related deaths worldwide. Here, we evaluated the efficacy of cannabinoid receptor agonists, a new family of potential antitumoral compounds, at skin melanoma. Human melanomas and melanoma cell lines express CB1 and CB2 cannabinoid receptors. Activation of these receptors decreased growth, proliferation, angiogenesis and metastasis, and increased apoptosis, of melanomas in mice. Cannabinoid antimelanoma activity was independent of the immune status of the animal, could be achieved without overt psychoactive effects and was selective for melanoma cells vs. normal melanocytes.

Cannabinoid antiproliferative action on melanoma cells…

 These findings may contribute to the design of new chemotherapeutic strategies for the management of melanoma.

 …the present report, together with the implication of CB2 receptors in the control of processes such as pain initiation, emesis, and inflammation, opens the attractive possibility of finding cannabinoid-based therapeutic strategies devoid of nondesired psychotropic side effects.

Specifically, the antiproliferative effect of cannabinoids reported here may set the basis for a new therapeutic approach for the treatment of malignant melanoma.”

Full text: http://www.fasebj.org/content/20/14/2633.long

Revisiting CB1 receptor as drug target in human melanoma.

“Previous studies have indicated the antitumoral effect of human melanocytes, human melanoma cell lines expressing CB1 receptor (CB1), and of the peritumoral administration of endocannabinoids. In the present study, we systematically screened several human melanoma cell lines for the expression of CNR1 and demonstrated transcription of the authentic gene. The product of CNR1, the CB1 protein, was found localized to the cell membrane as well as to the cytoskeleton. Further, the studied human melanoma cell lines expressed functional CB1 since physiological and synthetic ligands, anandamide (AEA), Met-F-AEA, ACEA and AM251 showed a wide range of biological effects in vitro, for example anti-proliferative, proapoptotic and anti-migratory. More importantly, our studies revealed that systemic administration of a stable CB1 agonist, ACEA, into SCID mice specifically inhibited liver colonization of human melanoma cells.

Since therapeutic options for melanoma patients are still very limited, the endocannabinoid-CB1 receptor system may offer a novel target.”

http://www.ncbi.nlm.nih.gov/pubmed/22447182

Dronabinol for supportive therapy in patients with malignant melanoma and liver metastases.

“Loss of appetite and nausea can reduce the quality of life of patients with malignant melanoma and liver metastases. Often established antiemetic drugs fail to bring relief. Tetrahydrocannabinol (THC, Marinol), which is the active agent of Indian hemp, has been used successfully in this situation for other malignant tumors.

PATIENTS AND METHODS:

We treated 7 patients with hematogenous metastatic melanoma and liver metastases suffering from extensive loss of appetite and nausea supportively with dronabinol (Marinol. All of these patients had previously received standard antiemetic therapy without adequate relief. Dronabinol is a synthetic Delta-tetrahydrocannabinol. The drug was administered in capsule form. We evaluated the palliative effects of dronabinol with a special patient evaluation form, which was filled out at the beginning of the therapy and again after 4 weeks.

RESULTS:

The majority of patients described a significant increase in appetite and decrease in nausea. These effects remained for some weeks, but then decreased as metastases progressed and the general condition worsened. All of the patients experienced slight to moderate dizziness, but it was not sufficiently troubling to cause interruption or termination of therapy.

CONCLUSION:

Loss of appetite and nausea due to liver metastases of malignant melanoma can be treated in individual cases supportively with Dronabinol.”

http://www.ncbi.nlm.nih.gov/pubmed/16408219

Inhibition of basal and ultraviolet B-induced melanogenesis by cannabinoid CB(1) receptors: a keratinocyte-dependent effect.

“Ultraviolet radiation is the major environmental insult to the skin and stimulates the synthesis of melanin in melanocytes, which then distribute it to the neighboring keratinocytes where it confers photo-protection. Skin color results from the paracrine interaction between these two cell types. Recent studies suggest that endocannabinoids are potential mediators in the skin. Here, we investigated whether cannabinoid drugs play a role in melanogenesis and if ultraviolet radiation modifies the cutaneous endocannabinoid system.

We provide evidence that human melanoma cells (SK-mel-1) express CB(1) receptors… 

Furthermore, ultraviolet-B radiation increased endocannabinoids levels only in keratinocytes, whereas CB(1) cannabinoid receptor expression was up-regulated only in melanoma cells.

Our results collectively suggest that ultraviolet radiation activates paracrine CB(1)-mediated endocannabinoid signaling to negatively regulate melanin synthesis.

The endocannabinoid system in the skin may be a possible target for future therapies in pigmentary disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/21298280

The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action.

“The incidence of melanoma is considerably increasing worldwide. Frequent failing of classical treatments led to development of novel therapeutic strategies aiming at managing advanced forms of this skin cancer. Additionally, the implication of the endocannabinoid system in malignancy is actively investigated…

CONCLUSIONS:

This study suggests the interest of targeting the endocannabinoid system in the management of skin cancer and underlines the advantage of associating endocannabinoids with enzymatic hydrolysis inhibitors.

This may contribute to the improvement of long-term palliation or cure of melanoma.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364151/