Targeting Endocannabinoid Signaling: FAAH and MAG Lipase Inhibitors

Annual Reviews adds Remarq® across its collection of 47 journals – RedLink“Inspired by the medicinal properties of the plant Cannabis sativa and its principal component (-)-trans9-tetrahydrocannabinol (THC), researchers have developed a variety of compounds to modulate the endocannabinoid system in the human brain.

Inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), which are the enzymes responsible for the inactivation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, respectively, may exert therapeutic effects without inducing the adverse side effects associated with direct cannabinoid CB1 receptor stimulation by THC.

Here we review the FAAH and MAGL inhibitors that have reached clinical trials, discuss potential caveats, and provide an outlook on where the field is headed.”

https://pubmed.ncbi.nlm.nih.gov/32867595/

https://www.annualreviews.org/doi/10.1146/annurev-pharmtox-030220-112741

The Endocannabinoid System Alleviates Pain in a Murine Model of Cancer-Induced Bone Pain.

Journal of Pharmacology and Experimental Therapeutics: 372 (3)“Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis are long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects.

In our study we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer induced bone pain (CIBP). Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activate CB1 and CB2 receptors inhibiting inflammation and pain.

Together, these data support the application for MJN110 as a novel therapeutic for cancer induced bone pain.

SIGNIFICANCE STATEMENT: Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non-opioid based therapies is essential and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone.”

https://www.ncbi.nlm.nih.gov/pubmed/32054717

http://jpet.aspetjournals.org/content/early/2020/02/13/jpet.119.262337

Astroglial monoacylglycerol lipase controls mutant huntingtin-induced damage of striatal neurons.

Neuropharmacology

“Cannabinoids exert neuroprotection in a wide array of preclinical models. A number of these studies has focused on cannabinoid CB1receptors in striatal medium spiny neurons (MSNs) and the most characteristic MSN-degenerative disease, Huntington’s disease (HD). Accruing evidence supports that astrocytes contribute to drive HD progression, and that they express CB1 receptors, degrade endocannabinoids, and modulate endocannabinergic transmission. However, the possible role of the astroglial endocannabinoidsystem in controlling MSN integrity remains unknown. Here, we show that JZL-184, a selective inhibitor of monoacylglycerol lipase (MGL), the key enzyme that deactivates the endocannabinoid 2-arachidonoylglycerol, prevented the mutant huntingtin-induced up-regulation of the pro-inflammatory cytokine tumor necrosis factor-α in primary mouse striatal astrocytes via CB1 receptors. To study the role of astroglial MGL in vivo, we injected stereotactically into the mouse dorsal striatum viral vectors that encode mutant or normal huntingtin under the control of the glial fibrillary acidic protein promoter. We observed that, in wild-type mice, pharmacological blockade of MGL with JZL-184 (8 mg/kg/day, i.p.) conferred neuroprotection against mutant huntingtin-induced striatal damage, as evidenced by the prevention of MSN loss, astrogliosis, and motor coordination impairment. We next found that conditional mutant mice bearing a genetic deletion of MGL selectively in astroglial cells (MGLfloxed/floxed;GFAP-Cre/+ mice) were resistant to mutant huntingtin-induced MSN loss, astrogliosis, and motor coordination impairment. Taken together, these data support that astroglial MGL controls the availability of a 2-arachidonoylglycerol pool that ensues protection of MSNs in the mouse striatum in vivo, thus providing a potential druggable target for reducing striatal neurodegeneration.”

https://www.ncbi.nlm.nih.gov/pubmed/30914306

https://www.sciencedirect.com/science/article/pii/S0028390819301066?via%3Dihub

Inhibition of Monoacylglycerol Lipase Reduces the Reinstatement of Methamphetamine-Seeking and Anxiety-Like Behaviors in Methamphetamine Self-Administered Rats.

 Image result for international journal of neuropsychopharmacology

“Methamphetamine is a highly addictive psychostimulant with reinforcing properties. Our laboratory previously found that Δ8-tetrahydrocannabinol, an exogenous cannabinoid, suppressed the reinstatement of methamphetamine-seeking behavior.

The purpose of this study was to determine whether the elevation of endocannabinoids modulates the reinstatement of methamphetamine-seeking behavior and emotional changes in methamphetamine self-administered rats.

RESULTS:

JZL184 (32 and 40 mg/kg, i.p.), an inhibitor of monoacylglycerol lipase, significantly attenuated both the cue- and stress-induced reinstatement of methamphetamine-seeking behavior. Furthermore, URB597 (3.2 and 10 mg/kg, i.p.), an inhibitor of fatty acid amide hydrolase, attenuated only cue-induced reinstatement. AM251, a cannabinoid CB1 receptor antagonist, antagonized the attenuation of cue-induced reinstatement by JZL184 but not URB597. Neither JZL184 nor URB597 reinstated methamphetamine-seeking behavior when administered alone. In the elevated plus-maze test, rats that were in withdrawal from methamphetamine self-administration spent less time in the open arms. JZL184 ameliorated the decrease in time spent in the open arms.

CONCLUSION:

We showed that JZL184 reduced both the cue- and stress-induced reinstatement of methamphetamine-seeking and anxiety-like behaviors in rats that had self-administered methamphetamine. It was suggested that a decrease in 2-arachidonoylglycerol in the brain could drive the reinstatement of methamphetamine-seeking and anxiety-like behaviors.”

https://www.ncbi.nlm.nih.gov/pubmed/30481332

https://academic.oup.com/ijnp/advance-article/doi/10.1093/ijnp/pyy086/5210886

Controlled-Deactivation CB1 Receptor Ligands as a Novel Strategy to Lower Intraocular Pressure.

 pharmaceuticals-logo

“Nearly half a century has passed since the demonstration that cannabis and its chief psychoactive component Δ⁸-THC lowers intraocular pressure (IOP).

Elevated IOP remains the chief hallmark and therapeutic target for glaucoma, a condition that places millions at risk of blindness. It is likely that Δ⁸-THC exerts much of its IOP-lowering effects via the activation of CB1 cannabinoid receptors.

However, the initial promise of CB1 as a target for treating glaucoma has not thus far translated into a credible therapeutic strategy. We have recently shown that blocking monoacylglycerol lipase (MAGL), an enzyme that breaks the endocannabinoid 2-arachidonoyl glycerol (2-AG), substantially lowers IOP.

Another strategy is to develop cannabinoid CB1 receptor agonists that are optimized for topical application to the eye. Recently we have reported on a controlled-deactivation approach where the “soft” drug concept of enzymatic deactivation was combined with a “depot effect” that is commonly observed with Δ⁸-THC and other lipophilic cannabinoids.

This approach allowed us to develop novel cannabinoids with a predictable duration of action and is particularly attractive for the design of CB1 activators for ophthalmic use with limited or no psychoactive effects.

We have tested a novel class of compounds using a combination of electrophysiology in autaptic hippocampal neurons, a well-characterized model of endogenous cannabinoid signaling, and measurements of IOP in a mouse model.

We now report that AM7410 is a reasonably potent and efficacious agonist at CB1 in neurons and that it substantially (30%) lowers IOP for as long as 5 h after a single topical treatment. This effect is absent in CB1 knockout mice.

Our results indicate that the direct targeting of CB1 receptors with controlled-deactivation ligands is a viable approach to lower IOP in a murine model and merits further study in other model systems.”

https://www.ncbi.nlm.nih.gov/pubmed/29786643

http://www.mdpi.com/1424-8247/11/2/50

Modulation of central endocannabinoid system results in gastric mucosal protection in the rat.

Brain Research Bulletin

“Previous findings showed that inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), degrading enzymes of anandamide (2-AEA) and 2-arachidonoylglycerol (2-AG), reduced the nonsteroidal anti-inflammatory drug-induced gastric lesions.

The present study aimed to investigate: i./whether central or peripheral mechanism play a major role in the gastroprotective effect of inhibitors of FAAH, MAGL and AEA uptake, ii./which peripheral mechanism(s) may play a role in mucosal protective effect of FAAH, MAGL and uptake inhibitors.

Gastric mucosal damage was induced by acidified ethanol.

 

CONCLUSION:

Elevation of central endocannabinoid levels by blocking their degradation or uptake via stimulation of mucosal defensive mechanisms resulted in gastroprotective action against ethanol-induced mucosal injury. These findings might suggest that central endocannabinoid system may play a role in gastric mucosal defense and maintenance of mucosal integrity.”

https://www.ncbi.nlm.nih.gov/pubmed/29438780

https://www.sciencedirect.com/science/article/abs/pii/S0361923017306044

Neuroprotective Effects of MAGL (Monoacylglycerol Lipase) Inhibitors in Experimental Ischemic Stroke.

American Heart Association Learn and Live

“MAGL (monoacylglycerol lipase) is an enzyme that hydrolyzes the endocannabinoid 2-arachidonoylglycerol and regulates the production of arachidonic acid and prostaglandins-substances that mediate tissue inflammatory response. Here, we have studied the effects of the selective MAGL inhibitors JZL184 and MJN110 and their underlying molecular mechanisms on 3 different experimental models of focal cerebral ischemia.

Pharmacological inhibition of MAGL significantly attenuated infarct volume and hemispheric swelling. MAGL inhibition also ameliorated sensorimotor deficits, suppressed inflammatory response, and decreased the number of degenerating neurons. These beneficial effects of MAGL inhibition were not fully abrogated by selective antagonists of cannabinoid receptors, indicating that the anti-inflammatory effects are caused by inhibition of eicosanoid production rather than by activation of cannabinoid receptors.

Our results suggest that MAGL may contribute to the pathophysiology of focal cerebral ischemia and is thus a promising therapeutic target for the treatment of ischemic stroke.”

https://www.ncbi.nlm.nih.gov/pubmed/29440474

http://stroke.ahajournals.org/content/early/2018/02/12/STROKEAHA.117.019664

Targeting the endocannabinoid system as a potential anticancer approach.

Publication Cover

“The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer.

Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network.

As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances.

Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.” https://www.ncbi.nlm.nih.gov/pubmed/29390896  http://www.tandfonline.com/doi/abs/10.1080/03602532.2018.1428344?journalCode=idmr20

“Anticancer mechanisms of cannabinoids”   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791144/
“Cannabinoids as Anticancer Drugs.”

Cannabinoid CB1 and CB2 Receptors, and Monoacylglycerol Lipase Gene Expression Alterations in the Basal Ganglia of Patients with Parkinson’s Disease.

Neurotherapeutics

“Previous studies suggest that the endocannabinoid system plays an important role in the neuropathological basis of Parkinson’s disease (PD).

This study was designed to detect potential alterations in the cannabinoid receptors CB1 (CB1r) and CB2 (A isoform, CB2Ar), and in monoacylglycerol lipase (MAGL) gene expression in the substantia nigra (SN) and putamen (PUT) of patients with PD.

The results of the present study suggest that CB1r, CB2r, and MAGL are closely related to the neuropathological processes of PD.

Therefore, the pharmacological modulation of these targets could represent a new potential therapeutic tool for the management of PD.”

https://www.ncbi.nlm.nih.gov/pubmed/29352424

https://link.springer.com/article/10.1007%2Fs13311-018-0603-x

Inhibition of monoacylglycerol lipase terminates diazepam-resistant status epilepticus in mice and its effects are potentiated by a ketogenic diet.

Epilepsia

“Status epilepticus (SE) is a life-threatening and commonly drug-refractory condition. Novel therapies are needed to rapidly terminate seizures to prevent mortality and morbidity.

Monoacylglycerol lipase (MAGL) is the key enzyme responsible for the hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) and a major contributor to the brain pool of arachidonic acid (AA). Inhibiting of monoacylglycerol lipase modulates synaptic activity and neuroinflammation, 2 mediators of excessive neuronal activation underlying seizures.

We studied the effect of a potent and selective irreversible MAGL inhibitor, CPD-4645, on SE that was refractory to diazepam, its neuropathologic sequelae, and the mechanism underlying the drug’s effects.

SIGNIFICANCE:

MAGL represents a novel therapeutic target for treating status epilepticus and improving its sequelae. CPD-4645 therapeutic effects appear to be predominantly mediated by modulation of neuroinflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/29171003

http://onlinelibrary.wiley.com/doi/10.1111/epi.13950/abstract?systemMessage=Wiley+Online+Library+usage+report+download+page+will+be+unavailable+on+Friday+24th+November+2017+at+21%3A00+EST+%2F+02.00+GMT+%2F+10%3A00+SGT+%28Saturday+25th+Nov+for+SGT+