Pharmacological inhibition of MAGL lipase attenuates experimental colon carcinogenesis.

Image result for pharmacological research

“Colorectal cancer (CRC) is a major health problem in Western countries. The endocannabinoid 2-arachidonoyl-glycerol (2-AG) exerts antiproliferative actions in a number of tumoral cell lines, including CRC cells.

Monoacylglycerol lipase (MAGL), a serine hydrolase that inactivates 2-AG, is highly expressed in aggressive human cancer cells.

Here, we investigated the role of MAGL in experimental colon carcinogenesis.

MAGL, possibly through modulation of angiogenesis, plays a pivotal role in experimental colon carcinogenesis.

Pharmacological inhibition of MAGL could represent an innovative therapeutic approach to reduce colorectal tumor progression.”

https://www.ncbi.nlm.nih.gov/pubmed/28193521

A novel inhibitor of endocannabinoid catabolic enzymes sheds light on behind the scene interplay between chronic pain, analgesic tolerance, and heroin dependence.

Image result for Neuropharmacology.

“From the Aristotelian ancient Greece, pain has been associated with appetites or emotions and is opposite to pleasure. Reward and addiction is also linked to pleasure and compulsive drug seeking reinstates pleasure.

Alleviation of chronic pain can induce a euphoric phase similar to what is found in addiction. Both chronic pain and addiction are recognized as a disease of the central nervous system. They share many characteristics and brain regions/mechanisms.

Evidence points to the usefulness of cannabinoids as a new class of agents to add to the pharmaceutical toolbox in the management of chronic pain.

Wilkerson and colleagues, in this issue, examine SA-57, an inhibitor of two different endocannabinoid catabolic enzymes FAAH and MAGL, demonstrating its analgesic effectiveness and morphine-sparing properties in a chronic pain model, as well as its ability to reduce heroin seeking behavior in a self-administration paradigm in mice.

This timely study emphasizes the need for development of more efficacious chronic pain therapeutics with minimized abuse potential and/or reinforcing properties. It also highlights the need for better understanding of the overlapping circuitry of chronic pain, reward, and addiction.”

https://www.ncbi.nlm.nih.gov/pubmed/27890603

Hemopressin peptides as modulators of the endocannabinoid system and their potential applications as therapeutic tools.

Image result for Protein and Peptide Letters

“The endocannabinoid system is activated by the binding of natural arachidonic acid derivatives (endogenous cannabinoids or endocannabinoids) as lipophilic messengers to cannabinoid receptors CB1 and CB2.

The endocannabinoid system comprises also many hydrolytic enzymes responsible for the endocannabinoids cleavage, such as FAAH and MAGL. These two enzymes are possible therapeutic targets for the development of new drugs as indirect cannabinoid agonists.

Recently a new family of endocannabinoid modulators was discovered; the lead of this family is the nonapeptide hemopressin produced from enzymatic cleavage of the α-chain of hemoglobin and acting as negative allosteric modulator of CB1. Hemopressin shows several physiological effects, e.g. antinociception, hypophagy, and hypotension.  It is still matter of debate whether this peptide, isolated from the brain of rats is a real neuromodulator of the endocannabinoid system.

Recent evidence indicates that hemopressin could be a by-product formed by chemical degradation of a longer peptide RVD-hemopressin during the extraction from the brain homolysate. Indeed, RVD-hemopressin is more active than hemopressin in certain biological tests and may bind to the same subsite as Rimonabant, which is an inverse agonist for the CB1 receptor and a μ-opioid receptor antagonist.

These findings have stimulated several studies to verify this hypothesis and to evaluate possible therapeutic applications of hemopressin, its peptidic derivatives and synthetic analogues, opening new perspectives to the development of novel cannabinoid drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/27748182

From Fertilisation to Implantation in Mammalian Pregnancy-Modulation of Early Human Reproduction by the Endocannabinoid System.

 

pharmaceuticals-logo

“There is an increasing recognition that the endocannabinoid system is the crucial cytokine-hormone system regulating early human pregnancy. The synchronous development of the fertilized embryo and the endometrium to ensure timely implantation has been shown to be one of the pivotal steps to successful implantation. This development is thought to be regulated by a finely balanced relationship between various components of the endocannabinoid system in the endometrium, the embryo and the Fallopian tube. In addition, this system has also been shown to be involved in the regulation of the development and maturation of the gametes prior to fertilization. In this review, we will examine the evidence from animal and human studies to support the role of the endocannabinoid system in gametogenesis, fertilization, implantation, early pregnancy maintenance, and in immunomodulation of pregnancy. We will discuss the role of the cannabinoid receptors and the enzymes involved in the synthesis and degradation of the key endocannabinoid ligands (e.g., anandamide and 2-arachinoylglycerol) in early reproduction.”

https://www.ncbi.nlm.nih.gov/pubmed/27713383

Cross-validated stable-isotope dilution GC-MS and LC-MS/MS assays for monoacylglycerol lipase (MAGL) activity by measuring arachidonic acid released from the endocannabinoid 2-arachidonoyl glycerol.

“2-Arachidonoyl glycerol (2AG) is an endocannabinoid that activates cannabinoid (CB) receptors CB1 and CB2. Monoacylglycerol lipase (MAGL) inactivates 2AG through hydrolysis to arachidonic acid (AA) and glycerol, thus modulating the activity at CB receptors.” http://www.ncbi.nlm.nih.gov/pubmed/27511795

Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model.

“Cannabinoids, such as Δ9-THC, act through an endogenous signaling system in the vertebrate eye that reduces IOP via CB1 receptors.

Endogenous cannabinoid (eCB) ligand, 2-arachidonoyl glycerol (2-AG), likewise activates CB1 and is metabolized by monoacylglycerol lipase (MAGL). We investigated ocular 2-AG and its regulation by MAGL and the therapeutic potential of harnessing eCBs to lower IOP.

Our data confirm a central role for MAGL in metabolism of ocular 2-AG and related lipid species, and that endogenous 2-AG can be harnessed to reduce IOP. The MAGL blocker KML29 has promise as a therapeutic agent, while JZL184 may have difficulty crossing the cornea.

These data, combined with the relative specificity of MAGL for ocular monoacylglycerols and the lack of desensitization in MAGL-/- mice, suggest that the development of an optimized MAGL blocker offers therapeutic potential for treatment of elevated IOP.”

http://www.ncbi.nlm.nih.gov/pubmed/27333182

Dynamic of expression and localization of cannabinoid-degrading enzymes FAAH and MGLL in relation to CB1 during meiotic maturation of human oocytes.

“The endogenous cannabinoid system has been characterized in some female reproductive organs but little is known about the expression and localization pattern of cannabinoid-degrading enzymes in relation to the CB1 cannabinoid receptor in human oocytes. In this study, we focus on the investigation of the presence and differential distribution of fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) in relation to CB1 during the maturation of human oocytes. We used a total of 290 human oocytes not suitable for in vitro fertilization/intracytoplasmic sperm injection (ICSI): germinal-vesicle (GV) and metaphase-I (MI) stages and metaphase-II (MII) oocytes that had not developed into an embryo after ICSI.Cannabinoid-degrading enzymes and the cannabinoid CB1 receptor were present in human oocytes. Specifically, FAAH was detected in the periphery of the oocyte from the GV to MI stage and co-localized with CB1. Later, by the MII stage, FAAH was spread within the oocyte, whereas MGLL immunostaining was homogeneous across the oocyte at all stages of maturation and only overlapped with CB1 at the GV stage. This coordinated redistribution of cannabinoid system proteins suggests a role for this system in the maturation of the female gamete.”

http://www.ncbi.nlm.nih.gov/pubmed/26948343

Role of cannabinoids in gastrointestinal mucosal defense and inflammation.

“Modulating the activity of the endocannabinoid system influences various gastrointestinal physiological and pathophysiological processes, and cannabinoid receptors as well as regulatory enzymes responsible for the synthesis or degradation of endocannabinoids represent potential targets to reduce the development of gastrointestinal mucosal lesions, hemorrhage and inflammation.

Direct activation of CB1 receptors by plant-derived, endogenous or synthetic cannabinoids effectively reduces both gastric acid secretion and gastric motor activity, and decreases the formation of gastric mucosal lesions induced by stress, pylorus ligation, nonsteroidal anti-inflammatory drugs (NSAIDs) or alcohol, partly by peripheral, partly by central mechanisms.

Similarly, indirect activation of cannabinoid receptors through elevation of endocannabinoid levels by globally acting or peripherally restricted inhibitors of their metabolizing enzymes (FAAH, MAGL) or by inhibitors of their cellular uptake reduced the gastric mucosal lesions induced by NSAIDs in a CB1 receptor-dependent fashion.

Dual inhibition of FAAH and cyclooxygenase induced protection against both NSAID-induced gastrointestinal damage and intestinal inflammation.

Moreover, in intestinal inflammation direct or indirect activation of CB1 and CB2 receptors exerts also multiple beneficial effects.

Namely, activation of both CB receptors was shown to ameliorate intestinal inflammation in various murine colitis models, to decrease visceral hypersensitivity and abdominal pain, as well as to reduce colitis-associated hypermotility and diarrhea.

In addition, CB1 receptors suppress secretory processes and also modulate intestinal epithelial barrier functions. Thus, experimental data suggest that the endocannabinoid system represents a promising target in the treatment of inflammatory bowel diseases, and this assumption is also confirmed by preliminary clinical studies.”

http://www.ncbi.nlm.nih.gov/pubmed/26935536

The selective monoacylglycerol lipase inhibitor MJN110 produces opioid sparing effects in a mouse neuropathic pain model.

“Serious clinical liabilities associated with the prescription of opiates for pain control include constipation, respiratory depression, pruritus, tolerance, abuse, and addiction.

A recognized strategy to circumvent these side effects is to combine opioids with other antinociceptive agents.

The combination of opiates with the primary active constituent of cannabis, Δ9-tetrahydrocannabinol, produces enhanced antinociceptive actions, suggesting that cannabinoid receptor agonists can be opioid sparing…

Here, we tested whether elevating the endogenous cannabinoid 2-arachidonylglycerol (2-AG) through the inhibition of its primary hydrolytic enzyme monoacylglycerol lipase (MAGL), will produce opioid sparing effects…

These findings, taken together, suggest that MAGL inhibition produces opiate sparing events with diminished tolerance, constipation, and cannabimemetic side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/26791602

http://www.thctotalhealthcare.com/category/pain-2/

Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants.

“Cannabis and analogs of Δ9-tetrahydrocannabinol have been used for therapeutic purposes…

Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD).

Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD.

Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors).

In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors’ therapeutic potential.

MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2.

In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted.”

http://www.ncbi.nlm.nih.gov/pubmed/26630956