The Endocannabinoid System as an Emerging Target of Pharmacotherapy

Abstract

“The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson’s and Huntington’s disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients’ need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.”

Future Directions

“The length of this review, necessitated by the steady growth in the number of indications for the potential therapeutic use of cannabinoid-related medications, is a clear sign of the emerging importance of this field. This is further underlined by the quantity of articles in the public database dealing with the biology of cannabinoids, which numbered ∼200 to 300/year throughout the 1970s to reach an astonishing 5900 in 2004. The growing interest in the underlying science has been matched by a growth in the number of cannabinoid drugs in pharmaceutical development from two in 1995 to 27 in 2004, with the most actively pursued therapeutic targets being pain, obesity, and multiple sclerosis (Hensen, 2005). As in any rapidly growing area of research, not all the leads will turn out to be useful or even valid. Nevertheless, it is safe to predict that new therapeutic agents that affect the activity of the endocannaboinoid system will emerge and become members of our therapeutic armamentarium. The plant-derived cannabinoid preparation Sativex has already gained regulatory approval in Canada for the treatment of spasticity and pain associated with multiple sclerosis, and the CB1 receptor antagonist rimonabant has been approved in Europe and is awaiting Food and Drug Administration approval in the United States for the treatment of the metabolic syndrome. Undoubtedly, these will be followed by new and improved compounds aimed at the same or additional targets in the endocannabinoid system. However, it may be only after the widespread therapeutic use of such compounds that some important side effects will emerge. Although this occurrence would be undesirable from a health care perspective, such side effects may shed further light on the biological functions of endocannabinoids in health and disease.”

http://pharmrev.aspetjournals.org/content/58/3/389.long

THC From Cannabis Destroys Cancer Cells

“The study results strongly suggest that if taken regularly, cannabis oil may be able to induce remission in leukemia patients without the horrendous side effects typically associated with standard radio-chemical treatment options. Although this is only one such study, other similar studies have shown equally impressive results.

 Many of the active ingredients found in cannabis-derived drugs show exceptional promise in treating some of the greatest hurdles facing modern medical science. In addition to their aforementioned capacity for safely treating certain forms of deadly cancer, they also show great promise in alleviating autoimmune conditions such as rheumatoid arthritis, multiple sclerosis, and even inflammatory bowel disease. A growing number of experts also note their possible viability treating a range of neurological disorders including Alzheimer’s and Lou Gehrig’s disease.”

http://www.globalhealingcenter.com/natural-health/thc-from-cannabis-destroys-cancer-cells/

Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress

“Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system… Cannabidiol protects oligodendrocyte progenitor cells… These findings suggest that attenuation of the ER stress pathway is involved in the ‘oligoprotective’ effects of CBD during inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/22739983

Cannabis Science Presents Newest Photographs From 3rd Cancer Patient That Show Cancer Tumors Dying and Areas That Are Now Pain Free

January 30, 2012

“DENVER–(BUSINESS WIRE)– Cannabis Science, Inc. (OTCBB:CBIS.OB) a pioneering U.S. biotech company developing pharmaceutical cannabis (marijuana) products, is pleased to share new photographs from this cancer patient with severe squamous cell carcinoma. These pictures clearly show that this patient, with previously treatment-resistant tumors, continues to make obvious improvement. The tumors appear to be dying and then healing after treatment with cannabis-based extracts.”

http://www.cannabisscience.com/news-a-media/press-releases/262-cannabis-science-presents-newest-photographs-from-3rd-cancer-patient-that-show-cancer-tumors-dying-and-areas-that-are-now-pain-free.html

The Cannabinergic System as a Target for Anti-inflammatory Therapies

“Cell-based experiments or in vivo animal testing suggest that regulation of the endocannabinoid circuitry can impact almost every major function associated with the immune system. These studies were assisted by the development of numerous novel molecules that exert their biological effects through the endocannabinoid system. Several of these compounds were tested for their effects on immune function, and the results suggest therapeutic opportunities for a variety of inflammatory diseases such as multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, allergic asthma, and autoimmune diabetes through modulation of the endocannabinoid system.”

http://www.ingentaconnect.com/content/ben/ctmc/2006/00000006/00000013/art00008