Substitution profile of the cannabinoid agonist nabilone in human subjects discriminating δ9-tetrahydrocannabinol.

Abstract

“OBJECTIVES:

The central effects of Δ-tetrahydrocannabinol (Δ-THC), the primary active constituent of cannabis, are attributed to cannabinoid CB1 receptor activity, although clinical evidence is limited. Drug discrimination has proven useful for examining the neuropharmacology of drugs, as data are concordant with the actions of a drug at the receptor level. The aim of this study was to determine the profile of behavioral and physiological effects of the cannabinoid agonist nabilone in humans trained to discriminate Δ-THC.

METHODS:

Six cannabis users learned to identify when they received oral Δ-THC (25 mg) or placebo and then received a range of doses of the cannabinoid agonists nabilone (1, 2, 3, and 5 mg) and Δ-THC (5, 10, 15, and 25 mg). The dopamine reuptake inhibitor methylphenidate (5, 10, 20, and 30 mg) was included as a negative control. Subjects completed the Multiple-Choice Procedure, and self-report, task performance, and physiological measures were collected.

RESULTS:

Nabilone shared discriminative-stimulus effects with the training dose of Δ-THC, produced subject-rated drug effects that were comparable to those of Δ-THC, and increased heart rate. Methylphenidate did not engender Δ-THC-like discriminative-stimulus effects.

CONCLUSIONS:

These data demonstrate that the interoceptive effects of nabilone are similar to Δ-THC in cannabis users. The overlap in their behavioral effects is likely due to their shared mechanism as CB1 receptor agonists. Given the relative success of agonist replacement therapy to manage opioid, tobacco, and stimulant dependence, these results also support the evaluation of nabilone as a potential medication for cannabis-use disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/20838217

Separate and combined effects of the cannabinoid agonists nabilone and Δ9-THC in humans discriminating Δ9-THC

“Background

Agonist replacement treatment is a promising strategy to manage cannabis-use disorders. The aim of this study was to assess the combined effects of the synthetic cannabinoid agonist nabilone and Δ9-tetrahydrocannabinol (Δ9-THC) using drug-discrimination procedures, which are sensitive to drug interactions. Testing the concurrent administration of nabilone and Δ9-THC was also conducted to provide initial safety and tolerability data, which is important because cannabis users will likely lapse during treatment.”

“Conclusions

These results replicate a previous study demonstrating that nabilone shares agonist effects with the active constituent of cannabis in cannabis users, and contribute further by indicating that nabilone would likely be safe and well tolerated when combined with cannabis. These data support the conduct of future studies to determine if nabilone treatment would produce cross-tolerance to the abuse-related effects of cannabis and reduce cannabis use.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089804/

Nabilone: an effective antiemetic in patients receiving cancer chemotherapy.

Abstract

“Eighty evaluable patients receiving chemotherapy were entered on a random prospective double-blind study to evaluate the effectiveness of nabilone, a synthetic cannabinoid, compared to prochlorperazine. Most of these patients received cisplatin, a drug that universally produces severe nausea and vomiting, as part of a combination chemotherapy regimen. The patients served as their own controls, receiving either nabilone or prochlorperazine during two consecutive treatment courses with the identical chemotherapy. Side effects consisting of hypotension and lethargy were more pronounced with nabilone. Toxicity, in general, did not preclude antiemetic treatment and in no way interfered with chemotherapy. Sixty patients (75 per cent) reported nabilone to be more effective than prochlorperazine for relief of nausea and vomiting. Of these 60 patients, 46 required further chemotherapy and continued taking nabilone as the antiemetic of choice.”

http://www.ncbi.nlm.nih.gov/pubmed/6271844

Nabilone. A preliminary review of its pharmacological properties and therapeutic use.

Abstract

“Nabilone is a new orally active cannabinoid for the treatment of severe gastrointestinal toxicity associated with cancer chemotherapy. The pharmacological profile of nabilone suggests that it acts primarily by preventing emesis controlled by the medulla oblongata, although its secondary mild anxiolytic activity may contribute to the overall efficacy. Nabilone 2mg twice daily starting 12 hours prior to, and continued for the duration of, chemotherapy produces significant reduction in the severity and duration of nausea and the frequency of vomiting in about 50 to 70% of patients with severe symptoms refractory to conventional therapy. Nabilone has proven to be more effective in controlling symptoms and preferred by more patients than prochlorperazine 10mg 2 to 4 times daily in a limited number of studies, despite a higher incidence of side effects. Comparative trials against other new antiemetic agents, such as high dose metoclopramide, and use of nabilone in combination with other antiemetics remain to be undertaken. The incidence of side effects is high with nabilone; drowsiness, dizziness and/or vertigo occur in 60 to 70% of patients, but rarely lead to drug withdrawal, although more troublesome effects, such as postural hypotension, ataxia, vision disturbance and toxic psychoses, may cause discontinuation of therapy. Thus, nabilone offers an effective alternative to the treatment options available in a difficult therapeutic area – those patients with severe gastrointestinal side effects from cancer chemotherapy who are refractory to conventional therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/2863127

Anti-emetic efficacy and toxicity of nabilone, a synthetic cannabinoid, in lung cancer chemotherapy.

Abstract

“Nabilone, a synthetic cannabinoid, and Prochlorperazine were compared in a double-blind crossover study of 34 patients with lung cancer undergoing a 3-day schedule of chemotherapy with Cyclophosphamide, Adriamycin and Etoposide. Symptom scores were significantly better for patients on nabilone for nausea, retching and vomiting (P less than 0.05). Fewer subjects vomited with nabilone (P = 0.05) and the number of vomiting episodes was lower (P less than 0.05); no patients on nabilone required additional parenteral anti-emetic. More patients preferred nabilone for anti-emetic control (P less than 0.005). Adverse effects common with nabilone were drowsiness (57%), postural dizziness (35%) and lightheadedness (18%). Euphoria was seen in 14% and a “high” in 7%. Erect systolic blood pressure was lower in nabilone patients on Day 1 (P = 0.05) but postural hypotension was a major problem in only 7%. Nabilone is an effective oral anti-emetic drug for moderately toxic chemotherapy, but the range and unpredictability of its side-effects warrant caution in its use.”

http://www.ncbi.nlm.nih.gov/pubmed/6315040

Cannabinoids in medicine: A review of their therapeutic potential.

“In order to assess the current knowledge on the therapeutic potential of cannabinoids, a meta-analysis was performed through Medline and PubMed up to July 1, 2005. The key words used were cannabis, marijuana, marihuana, hashish, hashich, haschich, cannabinoids, tetrahydrocannabinol, THC, dronabinol, nabilone, levonantradol, randomised, randomized, double-blind, simple blind, placebo-controlled, and human. The research also included the reports and reviews published in English, French and Spanish.

For the final selection, only properly controlled clinical trials were retained, thus open-label studies were excluded. Seventy-two controlled studies evaluating the therapeutic effects of cannabinoids were identified. For each clinical trial, the country where the project was held, the number of patients assessed, the type of study and comparisons done, the products and the dosages used, their efficacy and their adverse effects are described.

 Cannabinoids present an interesting therapeutic potential as antiemetics, appetite stimulants in debilitating diseases (cancer and AIDS), analgesics, and in the treatment of multiple sclerosis, spinal cord injuries, Tourette’s syndrome, epilepsy and glaucoma.”

http://www.ncbi.nlm.nih.gov/pubmed/16540272