Synthetic Cannabinoids versus Natural Marijuana: A Comparison of Expectations

ScienceDaily

“A new study evaluated the expected outcomes of both synthetic and natural marijuana.

An article entitled “Comparison of Outcome Expectancies for Synthetic Cannabinoids and Botanical Marijuana,” from The American Journal of Drug and Alcohol Abuse, studied the expected outcomes of both synthetic and natural marijuana.

186 adults who had previously used both synthetic and natural marijuana, as well as 181 who had previously used only botanical marijuana, were surveyed about their expected outcomes of using either type of cannabinoid.

The results showed that the expected negative effects were significantly higher for synthetic marijuana than for natural marijuana across both categories of use history.

Despite the more commonly expected negative effects of synthetic cannabinoids, the most cited reasons for using these compounds were wider availability, avoiding a positive drug test, curiosity, perceived legality, and cost.

Authors concluded, “Given growing public acceptance of recreational and medical marijuana, coupled with negative perceptions and increasing regulation of synthetic cannabinoid compounds, botanical marijuana is likely to remain more available and more popular than synthetic cannabinoids.”

https://www.sciencedaily.com/releases/2016/04/160427081800.htm

Comparison of outcome expectancies for synthetic cannabinoids and botanical marijuana.http://www.ncbi.nlm.nih.gov/pubmed/26910181


Story Source:

Cannabimovone, a Cannabinoid with a Rearranged Terpenoid Skeleton from Hemp

“An investigation of the polar fractions from a nonpsychotropic variety of hemp (Cannabis sativa L.) afforded cannabimovone, a polar cannabinoid with a rearranged 2(34) abeo-terpenoid skeleton, biogenetically originating from the intramolecular aldolization of a 2′,3′-seco-menthanyl precursor.

The structure of cannabimovone was elucidated by spectroscopic analysis, whereas attempts to mimic its biogenetic derivation from cannabidiol gave only anhydrocannabimovone, the intramolecular oxy-Michael adduct of the crotonized version of the elusive natural products.

Biological evaluation of cannabimovone against metabotropic (CB1, CB2) and ionotropic (TRPs) cannabinoid receptors showed a significant activity only for ionotropic receptors, especially TRPV1, whereas anhydrocannabimovone exhibited strong activity at both ionotropic and metabotropic cannabinoid receptors.

Overall, the biological profile of anhydrocannabimovone was somewhat similar to that of THC, suggesting a remarkable tolerance to constitutional and configurational changes.”

http://onlinelibrary.wiley.com/doi/10.1002/ejoc.200901464/abstract

Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents.

“Treatment of cancer is a significant challenge in clinical medicine, and its research is a top priority in chemical biology and drug discovery. Consequently, there is an urgent need for identifying innovative chemotypes capable of modulating unexploited drug targets.

The transient receptor potential (TRPs) channels persist scarcely explored as targets, despite intervening in a plethora of pathophysiological events in numerous diseases, including cancer.

Both agonists and antagonists have proven capable of evoking phenotype changes leading to either cell death or reduced cell migration.

Among these, natural products entail biologically pre-validated and privileged architectures for TRP recognition.

Furthermore, several natural products have significantly contributed to our current knowledge on TRP biology. In this Tutorial Review we focus on selected natural products, e.g. capsaicinoids, cannabinoids and terpenes, by highlighting challenges and opportunities in their use as starting points for designing natural product-inspired TRP channel modulators.

Importantly, the de-orphanization of natural products as TRP channel ligands may leverage their exploration as viable strategy for developing anticancer therapies.

Finally, we foresee that TRP channels may be explored for the selective pharmacodelivery of cytotoxic payloads to diseased tissues, providing an innovative platform in chemical biology and molecular medicine.”

http://www.ncbi.nlm.nih.gov/pubmed/26890476

http://www.thctotalhealthcare.com/category/cancer/

Harvesting the biosynthetic machineries that cultivate a variety of indispensable plant natural products.

“Plants are a sustainable resource for valuable natural chemicals best illustrated by large-scale farming centered on specific products. Here, we review recent discoveries of plant metabolic pathways producing natural products with unconventional biomolecular structures.

Prenylation of polyketides by aromatic prenyltransferases (aPTases) ties together two of the major groups of plant specialized chemicals, terpenoids and polyketides, providing a core modification leading to new bioactivities and downstream metabolic processing. Moreover, PTases that biosynthesize Z-terpenoid precursors for small molecules such as lycosantalene have recently been found in the tomato family.

Gaps in our understanding of how economically important compounds such as cannabinoids are produced are being identified using next-generation ‘omics’ to rapidly advance biochemical breakthroughs at an unprecedented rate. For instance, olivetolic acid cyclase, a polyketide synthase (PKS) co-factor from Cannabis sativa, directs the proper cyclization of a polyketide intermediate.

Elucidations of spatial and temporal arrangements of biosynthetic enzymes into metabolons, such as those used to control the efficient production of natural polymers such as rubber and defensive small molecules such as linamarin and lotaustralin, provide blueprints for engineering streamlined production of plant products.”

http://www.ncbi.nlm.nih.gov/pubmed/26851514

A systematic review of plant-derived natural compounds for anxiety disorders.

“Anxiety disorders are the most common mental illnesses affecting human beings. They range from panic to generalized anxiety disorders upsetting the well-being and psychosocial performance of patients. Several conventional anxiolytic drugs are being used which in turn result in several adverse effects. Therefore, studies to find suitable safe medicines from natural sources are being conducted by researchers.

The aim of the present study is to comprehensively review phytochemical compounds with well-established anxiolytic activities and their structure-activity relationships as well as neuropsychopharmacological aspects. Results showed that phytochemicals like; alkaloids, flavonoids, phenolic acids, lignans, cinnamates, terpenes and saponins possess anxiolytic effects in a wide range of animal models of anxiety.

The involved mechanisms include interaction with γ-aminobutyric acid (GABA)A receptors at benzodiazepine (BZD) and non-BZD sites with various affinity to different subunits, serotonergic 5-hydrodytryptamine (5-HT)1A and 5-HT2A/C receptors, noradrenergic and dopaminergic systems, glycine and glutamate receptors, and κ-opioid receptor as well as cannabinoid (CB)1 and CB2 receptors.

Phytochemicals also modulate the hypothalamo-pituitary-adrenal (HPA) axis, the levels of pro-inflammatory cytokines like interleukin (IL)-2, IL-6, IL-1β and tumor necrosis factor (TNF)-α, and improve brain derived neurotrophic factor (BDNF) levels. Transient receptor potential cation channel subfamily V (TRPV)3, nitric oxide cyclic guanosine monophosphate (NO-cGMP) pathway and monoamine oxidase enzymes are other targets of phytochemicals with anxiolytic activity.

Taking together, these phytochemicals may be considered as supplements to conventional anxiolytic therapies in order to improve efficacy and reduce adverse effects.

Further preclinical and clinical studies are still needed in order to recognize the structure-activity relationships, metabolism, absorption, and neuropsychopharmacological mechanisms of plant-derived natural agents.”

http://www.ncbi.nlm.nih.gov/pubmed/26845556

β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice.

“…high-fat diet (HFD) feeding stimulated solid tumor growth and lymph node (LN) metastasis… β-caryophyllene (BCP) is a natural bicyclic sesquiterpene found in many essential oils and has been shown to exert anti-inflammatory activities….

BCP inhibits HFD-induced melanoma progression…

β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice.” http://www.ncbi.nlm.nih.gov/pubmed/26025912

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

http://www.thctotalhealthcare.com/category/melanoma/

Endocannabinoid Mechanisms Influencing Nausea.

“One of the first recognized medical uses of Δ(9)-tetrahydrocannabinol was treatment of chemotherapy-induced nausea and vomiting.

Although vomiting is well controlled with the currently available non-cannabinoid antiemetics, nausea continues to be a distressing side effect of chemotherapy and other disorders.

Indeed, when nausea becomes conditionally elicited by the cues associated with chemotherapy treatment, known as anticipatory nausea (AN), currently available antiemetics are largely ineffective.

Considerable evidence demonstrates that the endocannabinoid system regulates nausea in humans and other animals.

In this review, we describe recent evidence suggesting that cannabinoids and manipulations that enhance the functioning of the natural endocannabinoid system are promising treatments for both acute nausea and AN.”

Dietary Supplement Therapies for Inflammatory Bowel Disease: Crohn’s Disease and Ulcerative Colitis.

“Inflammatory bowel disease (IBD) including ulcerative colitis and Crohn’s disease are chronic relapsing and remitting chronic diseases for which there is no cure.

The treatment of IBD frequently requires immunosuppressive and biologic therapies which carry an increased risk of infections and possible malignancy.

There is a continued search for safer and more natural therapies in the treatment of IBD.

This review aims to summarize the most current literature on the use of dietary supplements for the treatment of IBD. Specifically, the efficacy and adverse effects of vitamin D, fish oil, probiotics, prebiotics, curcumin, Boswellia serrata, aloe vera and cannabis sativa are reviewed.”

http://www.ncbi.nlm.nih.gov/pubmed/26561079

Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury

Heart and Circulatory Physiology

“CANNABINOIDS ARE NATURAL and synthetic compounds structurally or pharmacologically related to the constituents of the plant Cannabis sativa or to the endogenous agonists (endocannabinoids) of the cannabinoid CB1 and CB2 receptors.

Cannabidiol (CBD) is a major cannabinoid constituent of Cannabis.

In contrast to tetrahydrocannabinol, CBD binds very weakly to CB1 and CB2 receptors. Contrary to most cannabinoids, CBD does not induce psychoactive or cognitive effects.

CBD has been shown to have anti-inflammatory properties. CBD (together with tetrahydrocannabinol) has been successfully tested in a few preliminary human trials related to autoimmune diseases…

Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling.

Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts.

Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo.

Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.”

http://ajpheart.physiology.org/content/293/6/H3602

Synthetic cannabis: a comparison of patterns of use and effect profile with natural cannabis in a large global sample.

“Natural cannabis was preferred to synthetic cannabis by 93% of users, with natural cannabis rated as having greater pleasurable effects when high and being more able to function after use. Synthetic cannabis was associated with more negative effects, hangover effects, and greater paranoia…

Users report a strong preference for natural over synthetic cannabis…”

http://www.ncbi.nlm.nih.gov/pubmed/23291209