Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease.

Abstract

“Cannabinoids have been reported to provide neuroprotection in acute and chronic neurodegeneration. In this study, we examined whether they are also effective against the toxicity caused by 6-hydroxydopamine, both in vivo and in vitro, which may be relevant to Parkinson’s disease (PD). First, we evaluated whether the administration of cannabinoids in vivo reduces the neurodegeneration produced by a unilateral injection of 6-hydroxydopamine into the medial forebrain bundle. As expected, 2 weeks after the application of this toxin, a significant depletion of dopamine contents and a reduction of tyrosine hydroxylase activity in the lesioned striatum were noted, and were accompanied by a reduction in tyrosine hydroxylase-mRNA levels in the substantia nigra. None of these events occurred in the contralateral structures. Daily administration of delta9-tetrahydrocannabinol (delta9-THC) during these 2 weeks produced a significant waning in the magnitude of these reductions, whereas it failed to affect dopaminergic parameters in the contralateral structures. This effect of delta9-THC appeared to be irreversible since interruption of the daily administration of this cannabinoid after the 2-week period did not lead to the re-initiation of the 6-hydroxydopamine-induced neurodegeneration. In addition, the fact that the same neuroprotective effect was also produced by cannabidiol (CBD), another plant-derived cannabinoid with negligible affinity for cannabinoid CB1 receptors, suggests that the antioxidant properties of both compounds, which are cannabinoid receptor-independent, might be involved in these in vivo effects, although an alternative might be that the neuroprotection exerted by both compounds might be due to their anti-inflammatory potential. As a second objective, we examined whether cannabinoids also provide neuroprotection against the in vitro toxicity of 6-hydroxydopamine. We found that the non-selective cannabinoid agonist HU-210 increased cell survival in cultures of mouse cerebellar granule cells exposed to this toxin. However, this effect was significantly lesser when the cannabinoid was directly added to neuronal cultures than when these cultures were exposed to conditioned medium obtained from mixed glial cell cultures treated with HU-210, suggesting that the cannabinoid exerted its major protective effect by regulating glial influence to neurons. In summary, our results support the view of a potential neuroprotective action of cannabinoids against the in vivo and in vitro toxicity of 6-hydroxydopamine, which might be relevant for PD. Our data indicated that these neuroprotective effects might be due, among others, to the antioxidant properties of certain plant-derived cannabinoids, or exerted through the capability of cannabinoid agonists to modulate glial function, or produced by a combination of both mechanisms.”

http://www.ncbi.nlm.nih.gov/pubmed/15837565

Neuroprotection by Δ9-Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity

“These results provide evidence that the cannabinoid system can serve to protect the brain against neurodegeneration.”

“In summary, we have shown that in an in vivo model of neurodegeneration Δ9-THC reduces neuronal damage via a CB1-receptor-mediated mechanism. This holds in both the acute and late phase after induction of excitotoxicity. Δ9-THC inhibits astrogliosis via a non-CB1-receptor-controlled mechanism. The results strengthen the concept that the endogenous cannabinoid system may serve to establish a defense system for the brain. This system may be functional in several neurodegenerative diseases in which excitotoxicity is thought to play a role, such as amyotrophic lateral sclerosis, Huntington’s and Parkinson’s diseases, and also in acute neuronal damage as found in stroke and traumatic brain injury. It is conceivable that the endogenous cannabinoid system can be exploited for therapeutic interventions in these types of primarily incurable diseases.”

http://www.jneurosci.org/content/21/17/6475.long

The seek of neuroprotection: introducing cannabinoids.

Abstract

“The cannabinoid system is constituted by some endogenous ligands (endocannabinoids), usually arachydonic acid derivatives, and their specific receptors. The endogenous cannabinoid system (ECS) is involved in the control of synaptic transmission, modulating memory, motivation, movement, nociception, appetite and thermoregulation. ECS also exert extraneural effects, mainly immunomodulation and vasodilation. Two cannabinoid receptors have been cloned so far: CB(1) receptors are expressed in the central nervous system (CNS) but can also be found in glial cells and in peripheral tissues; CB(1) receptors are Gi/o protein coupled receptors that modulate the activity of several plasma membrane proteins and intracellular signaling pathways. CB(2) receptors are also Gi/o protein-coupled receptors; although it is accepted that CB(2) receptors are not expressed in forebrain neurons, they have been described in activated glia. Some of the cannabinoids activate other receptors, for instance vanilloid receptors (TRPV1). Lately, the ECS is emerging as a natural system of neuroprotection. This consideration is based on some properties of cannabinoids as their vasodilatory effect, the inhibition of the release of excitotoxic amino acids and cytokines, and the modulation of oxidative stress and toxic production of nitric oxide. Such effects have been demonstrated in adult and newborn animal models of acute and chronic neurodegenerative conditions, and postulate cannabinoids as valuable neuroprotective agents. Patents related to cannabinoid receptors are also discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/18221224

The therapeutic potential of the cannabinoids in neuroprotection.

Abstract

“After thousands of years of interest the last few decades have seen a huge increase in our knowledge of the cannabinoids and their mode of action. Their potential as medical therapeutics has long been known. However, very real concerns over their safety and efficacy have lead to caution and suspicion when applying the legislature of modern medicine to these compounds. The ability of this diverse family of compounds to modulate neurotransmission and act as anti-inflammatory and antioxidative agents has prompted researchers to investigate their potential as neuroprotective agents. Indeed, various cannabinoids rescue dying neurones in experimental forms of acute neuronal injury, such as cerebral ischaemia and traumatic brain injury. Cannabinoids also provide symptomatic relief in experimental models of chronic neurodegenerative diseases, such as multiple sclerosis and Huntington’s disease. This preclinical evidence has provided the impetus for the launch of a number of clinical trials in various conditions of neurodegeneration and neuronal injury using compounds derived from the cannabis plant. Our understanding of cannabinoid neurobiology, however, must improve if we are to effectively exploit this system and take advantage of the numerous characteristics that make this group of compounds potential neuroprotective agents.”

http://www.ncbi.nlm.nih.gov/pubmed/12387700

Cannabinoids and neuroprotection.

Abstract

“Cannabinoid compounds are endowed with pharmacological properties that make them interesting candidates for therapeutic development. These properties have been known since antiquity. However, in the last decade extremely important advances in the understanding of the physiology, pharmacology, and molecular biology of the cannabinoid system have given this field of research fresh impetus and have renewed the interest in the possible clinical exploitation of these compounds. In the present review we summarize the effects elicited, at the cellular level, by cannabinoids acting through receptor-dependent and receptor-independent mechanisms. These data suggest different ways by which cannabinoids may act as neuroprotective agents (prevention of excitotoxicity by inhibition of glutamate release, antioxidant effects, anti-inflammatory actions, etc.). The experimental evidence supporting these hypotheses are presented and discussed with regard to both preclinical and clinical studies in disease states such as cerebral ischemia, brain trauma, and Multiple Sclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/11831553

The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning?

Abstract

“The endocannabinoid system (ECS) consists of two receptors (CB(1) and CB(2)), several endogenous ligands (primarily anandamide and 2-AG), and over a dozen ligand-metabolizing enzymes. The ECS regulates many aspects of embryological development and homeostasis, including neuroprotection and neural plasticity, immunity and inflammation, apoptosis and carcinogenesis, pain and emotional memory, and the focus of this review: hunger, feeding, and metabolism. This mini-review summarizes the main findings that supported the clinical use of CB1 antagonists/inverse agonists, the clinical concerns that have emerged, and the possible future of cannabinoid-based therapy of obesity and related diseases. The ECS controls energy balance and lipid metabolism centrally (in the hypothalamus and mesolimbic pathways) and peripherally (in adipocytes, liver, skeletal muscle and pancreatic islet cells), acting through numerous anorexigenic and orexigenic pathways. Obese people seem to display an increased endocannabinoid tone, driving CB(1) receptor in a feed-forward dysfunction. Several CB(1) antagonists/inverse agonists have been developed for the treatment of obesity. Although these drugs were found to be efficacious at reducing food intake as well as abdominal adiposity and cardiometabolic risk factors, they resulted in adverse psychiatric effects that limited their use and finally led to the end of the clinical use of systemic CB(1) ligands with significant inverse agonist activity for complicated obesity. However, the existence of alternatives such as CB(1) partial agonists, neutral antagonists, antagonists restricted to the periphery, allosteric modulators and other potential targets within the ECS indicate that a cannabinoid-based therapy for the management of obesity and its associated cardiometabolic sequelae should remain open for consideration.”

http://www.ncbi.nlm.nih.gov/pubmed/20347862

Pharmacology of cannabinoids.

Abstract

“Dronabinol (Delta 9-tetrahydocannabinol, THC), the main source of the pharmacological effects caused by the use of cannabis, is an agonist to both the CB1 and the CB2 subtype of cannabinoid receptors. It is available on prescription in several countries. The non-psychotropic cannabidiol (CBD), some analogues of natural cannabinoids and their metabolites, antagonists at the cannabinoid receptors and modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoid receptors are distributed in the central nervous system and many peripheral tissues including spleen, leukocytes; reproductive, urinary and gastrointestinal tracts; endocrine glands, arteries and heart. Five endogenous cannabinoids have been detected so far, of whom anandamide and 2-arachidonylglycerol are best characterized. There is evidence that besides the two cannabinoid receptor subtypes cloned so far additional cannabinoid receptor subtypes and vanilloid receptors are involved in the complex physiological functions of the cannabinoid system that include motor coordination, memory procession, control of appetite, pain modulation and neuroprotection. Strategies to modulate their activity include inhibition of re-uptake into cells and inhibition of their degradation to increase concentration and duration of action. Properties of cannabinoids that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, anti-inflammation, anti-allergic effects, sedation, improvement of mood, stimulation of appetite, anti-emesis, lowering of intraocular pressure, bronchodilation, neuroprotection and antineoplastic effects.”

http://www.ncbi.nlm.nih.gov/pubmed/15159677

Cannabinoid Receptor Subtypes 1 and 2 Mediate Long-Lasting Neuroprotection and Improve Motor Behaviour Deficits After Transient Focal Cerebral Ischemia.

“The endocannabinoid system is crucially involved in the regulation of brain activity and inflammation. We have investigated the localization of cannabinoid CB1 and CB2 receptors in adult rat brains before and after focal cerebral ischemia due to endothelin-induced transient occlusion of the middle cerebral artery (eMCAO). Using immunohistochemistry, both receptor subtypes were identified in cortical neurons. After eMCAO, neuronal cell death was accompanied by reduced neuronal CB1 and CB2 receptor-linked immunofluorescence. In parallel, CB1 receptor was found in activated microglia/macrophages 3 days post eMCAO and in astroglia cells at day 3 and 7. CB2 receptor labeling was identified in activated microglia/macrophages or astroglia 3 days and 7 days post ischemia, respectively. In addition, immune competent CD45-positive cells were characterized by pronounced CB2 receptor staining 3 and 7 days post eMCAO. KN38-72717, a potent and selective CB1 and CB2 receptor agonist, revealed a significant, dose-dependent and long-lasting reduction of cortical lesions sizes due to eMCAO, when applied consecutively before, during and after eMCAO. In addition, severe motor deficits of animals suffering from eMCAO were significantly improved by KN38-7271. KN38-7271 remained effective, even if its application was delayed up to 6 h post eMCAO. Finally, we show that the endocannabinoid system assembles a comprehensive machinery to defend the brain against the devastating consequences of cerebral ischemia. In summary, this study underlines the therapeutic potential of CB1 and/or CB2 receptor agonists against neurodegenerative diseases or injuries involving acute or chronic imbalances of cerebral blood flow and energy consumption.”

http://www.ncbi.nlm.nih.gov/pubmed/23069763