Δ9-Tetrahydrocannabinol Derivative-Loaded Nanoformulation Lowers Intraocular Pressure in Normotensive Rabbits.

“Δ9-Tetrahydrocannabinol-valine-hemisuccinate, a hydrophilic prodrug of Δ9-tetrahydrocannabinol, synthesized with the aim of improving the ocular bioavailability of the parent molecule, was investigated in a lipid-based nanoparticle dosage form for ocular delivery.

RESULTS:

A peak intraocular pressure (IOP) drop of 30% from baseline was observed in rabbits treated with SLNs loaded with Δ9-tetrahydrocannabinol-valine-hemisuccinate at 90 minutes. Treated eyes of rabbits receiving Δ9-tetrahydrocannabinol-valine-hemisuccinate SLNs had significantly lower IOP than untreated eyes until 360 minutes, whereas the group receiving the emulsion formulation showed a drop in IOP until 90 minutes only. In comparison to marketed pilocarpine and timolol maleate ophthalmic solutions, Δ9-tetrahydrocannabinol-valine-hemisuccinate SLNs produced a greater effect on IOP in terms of both intensity and duration. In terms of tissue concentrations, significantly higher concentrations of Δ9-tetrahydrocannabinol-valine-hemisuccinate were observed in iris-ciliary bodies and retina-choroid with SLNs.

CONCLUSION:

Δ9-Tetrahydrocannabinol-valine-hemisuccinate formulated in a lipid-based nanoparticulate carrier shows promise in glaucoma pharmacotherapy.

TRANSLATIONAL RELEVANCE:

Glaucoma therapies usually focus on decreased aqueous humor production and increased outflow. However, such therapy is not curative, and there lies a need in preclinical research to focus efforts on agents that not only affect the aqueous humor dynamics but also provide neuroprotection. Historically, there have been bench-scale studies looking at retinal ganglion cell death post-axonal injury. However, for a smooth translation of this in vitro activity to the clinic, animal models examining IOP reduction, i.e., connecting the neuroprotective activity to a measurable outcome in glaucoma management (IOP), need to be investigated. This study investigated the IOP reduction efficacy of cannabinoids for glaucoma pharmacotherapy in a normotensive rabbit model, bringing forth a new class of agents with the potential of IOP reduction and improved permeation to the back of the eye, possibly providing neuroprotective benefits in glaucoma management.”

https://www.ncbi.nlm.nih.gov/pubmed/31588378

“THC has been demonstrated to be effective in glaucoma management, helping to lower IOP in human subjects after smoking marijuana; however, the molecule fails to manifest a similar effect when dosed topically. This research explores molecular bioengineering and formulation-based strategies to improve the ocular bioavailability of THC, facilitating the molecule to translate into a dosage form capable of demonstrating a desired IOP-lowering effect even on topical application. These studies suggest that formulation development efforts along with prodrug derivatization can effectively improve the overall ocular bioavailability of THC. Thus, THC-VHS represents a potential new therapy option for the treatment and management of glaucoma by virtue of its superiority in lowering IOP when compared to antiholinergic and beta blockers, as studied in this model.”

Neuroprotective protein hydrolysates from hemp (Cannabis sativa L.) seeds.

 “Hemp (Cannabis sativa L.) seeds are well known for their potential use as a source of nutrients, fiber, and bioactive compounds.

A hemp protein isolate, prepared from defatted hemp flour, was hydrolyzed by alcalase and flavourzyme under specific conditions.

The resulting hydrolysates were evaluated for the selection of potentially bioactive hemp protein hydrolysates (HPHs) owing to their DPPH scavenging and ferric reducing antioxidant power activity. In vitro cell-free experiments led to the identification of two bioactive HPHs, HPH20A and HPH60A + 15AF, which were used at 50 and 100 μg mL-1 on BV-2 microglial cells in order to evaluate the anti-neuroinflammatory activities.

Our results showed that HPH20A and HPH60A + 15AF down-regulated TNF-α, IL-1β, and IL-6 mRNA transcriptional levels in LPS-stimulated BV-2 microglial cells. In addition, HPH20A and HPH60A + 15AF up-regulated the gene expression of anti-inflammatory cytokine IL-10.

This study suggests for the first time that HPHs may improve the neuroinflammatory and inflammatory states, supporting the nutraceutical value of hemp seeds.”

https://www.ncbi.nlm.nih.gov/pubmed/31576391

https://pubs.rsc.org/en/content/articlelanding/2019/FO/C9FO01904A#!divAbstract

Druggable Targets of the Endocannabinoid System: Implications for the Treatment of HIV-Associated Neurocognitive Disorder.

Brain Research“HIV-associated neurocognitive disorder (HAND) affects nearly half of all HIV-infected individuals. Synaptodendritic damage correlates with neurocognitive decline in HAND, and many studies have demonstrated that HIV-induced neuronal injury results from excitotoxic and inflammatory mechanisms.

The endocannabinoid (eCB) system provides on-demand protection against excitotoxicity and neuroinflammation.

Here, we discuss evidence of the neuroprotective and anti-inflammatory properties of the eCB system from in vitro and in vivo studies. We examine the pharmacology of the eCB system and evaluate the therapeutic potential of drugs that modulate eCB signaling to treat HAND.

Finally, we provide perspective on the need for additional studies to clarify the role of the eCB system in HIV neurotoxicity and speculate that strategies that enhance eCB signaling might slow cognitive decline in HAND.”

https://www.ncbi.nlm.nih.gov/pubmed/31539547

https://www.sciencedirect.com/science/article/abs/pii/S0006899319305219?via%3Dihub

Cannabidiol improves metabolic dysfunction in middle-aged diabetic rats submitted to a chronic cerebral hypoperfusion.

Chemico-Biological Interactions“Cannabidiol (CBD), a compound obtained from Cannabis sativa, has wide range of therapeutic properties, including mitigation of diabetes and neurodegeneration.

Cerebral ischemia and consequent learning disabilities are aggravated in elderly diabetic subjects. However, there are no studies showing the effect of CBD treatment in elderly diabetes patients suffering cerebral ischemia.

The present work tested the hypothesis that CBD treatment improves metabolic dysfunctions in middle-aged diabetic rats submitted to chronic cerebral hypoperfusion.

CBD may be used as therapeutic tool to protect metabolism against injuries from diabetes aggravated by cerebral ischemia.”

https://www.ncbi.nlm.nih.gov/pubmed/31499052

“CBD reduced hyperglycemia of middle-aged diabetic rats with CCH. CBD increased insulin secretion and decreased AGEs levels. CBD reduced fructosamine, LDL, HDL, triglycerides and total cholesterol levels. CBD presented hepatoprotective effect. CBD could mitigate neurodegeneration caused by DM associated to cerebral ischemia.”

https://www.sciencedirect.com/science/article/abs/pii/S000927971930701X?via%3Dihub

Cannabinoids Δ9-tetrahydrocannabinol and cannabidiol may be effective against methamphetamine induced mitochondrial dysfunction and inflammation by modulation of Toll-like type-4(Toll-like 4) receptors and NF-κB signaling.

Medical Hypotheses“The neurodegeneration, neuro-inflammation and mitochondrial dysfunction which occur by methamphetamine (METH) abuse or administration are serious and motivation therapeutic approaches for inhibition of these types of neurodegeneration. As we know, METH through Toll-like receptors (TLRs), specially type 4, and NF-κB signaling pathway causes neuro-inflammation and mitochondrial dysfunction.

Neuroprotective approach for management of METH-induced neurodegeneration, inflammation and mitochondrial dysfunction, through a novel neuroprotective agent is continuously being superior to any kind of other therapeutic strategy. Therefore, the clarification, introduction and development of efficacious novel neuroprotective agent are demanded. During recent years, using new neuroprotective agent with therapeutic probability for treatment of METH-induced neuro-inflammation and mitochondrial dysfunction has been astoundingly increased.

Previous studies have stated the neuroprotective and anti-inflammatory roles of cannabinoid derivate such as cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) in multiple neurodegenerative events and diseases.

According to literature cannabinoid derivate, by inhibition of TLR4 and activation of NF-κB signaling pathway, exerts their anti-inflammatory and neuroprotective effects and cause mitochondrial biogenesis. Thus we hypothesized that by using cannabinoids in METH dependent subject it would provide neuroprotection against METH-induced neurodegeneration, neuro-inflammation and mitochondrial dysfunction and probably can manage sequels of METH-induced neurochemical abuses via modulation of TLR4/NF-κB signaling pathway.

In this article, we tried to discuss our hypothesis regarding the possible role of CBD and Δ9-THC, as a potent neuroprotective and anti-inflammatory agents, in inhibition or treatment of METH-induced neurodegeneration, neuro-inflammation and mitochondrial dysfunction through its effects on TLR4/NF-κB signaling pathway.”

https://www.ncbi.nlm.nih.gov/pubmed/31465975

https://www.sciencedirect.com/science/article/abs/pii/S030698771930739X?via%3Dihub

The Acute Activation of the CB1 Receptor in the Hippocampus Decreases Neurotoxicity and Prevents Spatial Memory Impairment in Rats Lesioned with β-Amyloid 25-35.

Neuroscience“Given their anti-inflammatory properties, cannabinoids have been shown to be neuroprotective agents and to reduce excitotoxicity, through the activation of the Cannabinoid receptor type 1 (CB1r).

These properties have led to CB1r being proposed as pharmacological targets for the treatment of various neurodegenerative diseases.

This study aimed to evaluate the neuroprotective effect of an acute activation of CB1r on spatial memory and its impact on iNOS protein expression, NO● levels, gliosis and the neurodegenerative process induced by the injection of Aβ(25-35) into the CA1 subfield of the hippocampus.

The data obtained in the present research suggest that the acute early activation of CB1r is crucial for neuroprotection.”

https://www.ncbi.nlm.nih.gov/pubmed/31400487

https://www.sciencedirect.com/science/article/abs/pii/S0306452219305433?via%3Dihub

Intraperitoneal cannabidiol attenuates neonatal germinal matrix hemorrhage-induced neuroinflamtion and perilesional apoptosis.

Publication Cover“As the survival of preterm infants has increased significantly, germinal matrix hemorrhage (GMH) has become an important public health issue. Nevertheless, treatment strategies for the direct neuronal injury are still scarce. The present study aims to analyze the neuroprotective properties of cannabidiol in germinal matrix hemorrhage.

Results. Reduction of reactive astrocytosis was observed both in the perilesional area 24 hours and 14 days after the hemorrhage lesion (p < 0.001) and in the Stratum oriens of the ipsilateral hippocampal CA1 14 days after the hemorrhage lesion (p < 0.05) in the treated groups. Similarly, there was a reduction in the number of Caspase 3-positive astrocytes in the perilesional area in the treated groups 24 hours after the hemorrhage lesion (p < 0.001). Finally, we found a significant increase in the weight of the rats treated with cannabidiol.

Conclusion. The treatment of GMH with cannabidiol significantly reduced the number of apoptotic cells and reactive astrocytes in the perilesional area and the ipsilateral hippocampus. In addition, this response was sustained 14 days after the hemorrhage. These results corroborate our hypothesis that cannabidiol is a potential neuroprotective agent in the treatment of germinal matrix hemorrhage.”

Endogenous and synthetic cannabinoids induce the downregulation of cannabinoid CB1 receptor in retina.

Experimental Eye Research

“Endogenous and synthetic cannabinoids have been shown to provide neuroprotection to retinal neurons in acute animal models of retinopathy.

Chronic exposure to cannabinoid receptor (CB1R) agonists has been reported to induce downregulation of the CB1R in brain and behavioral tolerance.

The aim of this study was to investigate the effect of subchronic/chronic cannabinoid administration on CB1R downregulation in normal rat retina, its downstream prosurvival signaling and subsequent effect on retinal neuroprotection against AMPA excitotoxicity.

This study provides novel information regarding agonist-induced CB1R downregulation in rat retina after subchronic/chronic cannabinoid treatment, and its effect on downstream prosurvival signaling and neuroprotection.”

https://www.ncbi.nlm.nih.gov/pubmed/31199905

https://www.sciencedirect.com/science/article/pii/S0014483519301216?via%3Dihub

Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer’s Disease.

“Finding a therapy for Alzheimer’s disease (AD) is perhaps the greatest challenge for modern medicine. The chemical scaffolds of many drugs in the clinic today are based upon natural products from plants, yet Cannabis has not been extensively examined as a source of potential AD drug candidates.

Here, we determine if a number of non-psychoactive cannabinoids are neuroprotective in a novel pre-clinical AD and neurodegeneration drug-screening platform that is based upon toxicities associated with the aging brain.

This drug discovery paradigm has yielded several compounds in or approaching clinical trials for AD. Eleven cannabinoids were assayed for neuroprotection in assays that recapitulate proteotoxicity, loss of trophic support, oxidative stress, energy loss, and inflammation. These compounds were also assayed for their ability to remove intraneuronal amyloid and subjected to a structure-activity relationship analysis. Pairwise combinations were assayed for their ability to synergize to produce neuroprotective effects that were greater than additive.

Nine of the 11 cannabinoids have the ability to protect cells in four distinct phenotypic neurodegeneration screening assays, including those using neurons that lack CB1 and CB2 receptors. They are able to remove intraneuronal Aβ, reduce oxidative damage, and protect from the loss of energy or trophic support. Structure-activity relationship (SAR) data show that functional antioxidant groups such as aromatic hydroxyls are necessary but not sufficient for neuroprotection. Therefore, there is a need to focus upon CB1 agonists that have these functionalities if neuroprotection is the goal.

Pairwise combinations of THC and CBN lead to a synergistic neuroprotective interaction.

Together, these results significantly extend the published data by showing that non-psychoactive cannabinoids are potential lead drug candidates for AD and other neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/31104297

https://link.springer.com/article/10.1007%2Fs12035-019-1637-8

Endocannabinoid System in Spinocerebellar Ataxia Type-3 and Other Autosomal-Dominant Cerebellar Ataxias: Potential Role in Pathogenesis and Expected Relevance as Neuroprotective Targets.

Image result for frontiers in molecular neuroscience
“Spinocerebellar ataxias (SCAs) are a group of hereditary and progressive neurological disorders characterized by a loss of balance and motor coordination. SCAs have no cure and effective symptom-alleviating and disease-modifying therapies are not currently available. However, based on results obtained in studies conducted in murine models and information derived from analyses in post-mortem tissue samples from patients, which show notably higher levels of CB1 receptors found in different cerebellar neuronal subpopulations, the blockade of these receptors has been proposed for acutely modulating motor incoordination in cerebellar ataxias, whereas their chronic activation has been proposed for preserving specific neuronal losses. Additional studies in post-mortem tissues from SCA patients have also demonstrated elevated levels of CB2 receptors in Purkinje neurons as well as in glial elements in the granular layer and in the cerebellar white matter, with a similar profile found for endocannabinoid hydrolyzing enzymes, then suggesting that activating CB2 receptors and/or inhibiting these enzymes may also serve to develop cannabinoid-based neuroprotective therapies.”
“Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3.” https://www.ncbi.nlm.nih.gov/pubmed/27717809