Cannabinoid receptor type 1 agonist ACEA improves motor recovery and protects neurons in ischemic stroke in mice.

“Brain ischemia produces neuronal cell death and the recruitment of pro-inflammatory cells.

In turn, the search for neuroprotection against this type of insult has rendered results involving a beneficial role of endocannabinoid receptor agonists in the Central Nervous System.

In this work, to further elucidate the mechanisms associated to this neuroprotective effect…

Motor tests showed a progressive deterioration in motor activity in ischemic animals, which only ACEA treatment was able to counteract.

Our results suggest that CB1R may be involved in neuronal survival and in the regulation of neuroprotection during focal cerebral ischemia in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/26296704

http://www.thctotalhealthcare.com/category/stroke-2/

Cannabidiol, a Cannabis sativa constituent, inhibits cocaine-induced seizures in mice: Possible role of the mTOR pathway and reduction in glutamate release.

“Cannabidiol (CBD), a major non-psychotomimetic constituent of Cannabis sativa, has therapeutic potential for certain psychiatric and neurological disorders.

Studies in laboratory animals and limited human trials indicate that CBD has anticonvulsant and neuroprotective properties.

Its effects against cocaine neurotoxicity, however, has remained unclear. Thus, the present study tested the hypothesis that CBD protects against cocaine-induced seizures and investigated the underlying mechanisms.

In conclusion, CBD protects against seizures in a model of cocaine intoxication.

CBD should be further investigated as a strategy for alleviating psychostimulant toxicity.”

http://www.ncbi.nlm.nih.gov/pubmed/26283212

Cannabinoids for the Treatment of Agitation and Aggression in Alzheimer’s Disease.

“Alzheimer’s disease (AD) is frequently associated with neuropsychiatric symptoms (NPS) such as agitation and aggression, especially in the moderate to severe stages of the illness. The limited efficacy and high-risk profiles of current pharmacotherapies for the management of agitation and aggression in AD have driven the search for safer pharmacological alternatives.

Over the past few years, there has been a growing interest in the therapeutic potential of medications that target the endocannabinoid system (ECS).

The behavioural effects of ECS medications, as well as their ability to modulate neuroinflammation and oxidative stress, make targeting this system potentially relevant in AD.

This article summarizes the literature to date supporting this rationale and evaluates clinical studies investigating cannabinoids for agitation and aggression in AD.

Letters, case studies, and controlled trials from four electronic databases were included. While findings from six studies showed significant benefits from synthetic cannabinoids-dronabinol or nabilone-on agitation and aggression, definitive conclusions were limited by small sample sizes, short trial duration, and lack of placebo control in some of these studies.

Given the relevance and findings to date, methodologically rigorous prospective clinical trials are recommended to determine the safety and efficacy of cannabinoids for the treatment of agitation and aggression in dementia and AD.”

Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications.

“Cannabinoids form a singular family of plant-derived compounds (phytocannabinoids), endogenous signaling lipids (endocannabinoids), and synthetic derivatives with multiple biological effects and therapeutic applications in the central and peripheral nervous systems.

One of these properties is the regulation of neuronal homeostasis and survival, which is the result of the combination of a myriad of effects addressed to preserve, rescue, repair, and/or replace neurons, and also glial cells against multiple insults that may potentially damage these cells.

These effects are facilitated by the location of specific targets for the action of these compounds (e.g., cannabinoid type 1 and 2 receptors, endocannabinoid inactivating enzymes, and nonendocannabinoid targets) in key cellular substrates (e.g., neurons, glial cells, and neural progenitor cells).

This potential is promising for acute and chronic neurodegenerative pathological conditions. In this review, we will collect all experimental evidence, mainly obtained at the preclinical level, supporting that different cannabinoid compounds may be neuroprotective in adult and neonatal ischemia, brain trauma, Alzheimer’s disease, Parkinson’s disease, Huntington’s chorea, and amyotrophic lateral sclerosis.

This increasing experimental evidence demands a prompt clinical validation of cannabinoid-based medicines for the treatment of all these disorders, which, at present, lack efficacious treatments for delaying/arresting disease progression…”

http://www.ncbi.nlm.nih.gov/pubmed/26260390

Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against LPS-induced impairments in rat caudate nucleus.

“Inflammation plays a pivotal role in the pathogenesis of many diseases in the central nervous system.

Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid and the true natural ligand for CB1 receptors, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in hippocampus.

In the present study, we discovered that 2-AG significantly protects CN neurons in culture against lipopolysaccharide (LPS)-induced inflammatory response.

Our study suggests the therapeutic potential of 2-AG for the treatment of some inflammation-induced neurological disorders and pain.”

http://www.ncbi.nlm.nih.gov/pubmed/24510751

Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against homocysteine-induced impairments in rat caudate nucleus through CB1 receptor.

“Homocysteine (Hcy) is a high risk factor for Alzheimer’s disease (AD). Caudate nucleus (CN), the major component of basal ganglia in the brain, is also involved in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the true natural ligand for cannabinoid type-1 (CB1) receptors and the most abundant endogenous cannabinoid, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in the hippocampus and CN.

In the present work, we explored that 2-AG significantly protects CN neurons in culture against Hcy-induced response.

2-AG is capable of inhibiting elevation of Hcy-induced cyclooxygenase-2 expression associated with nuclear factor-kappaB/p38MAPK/ERK1/2 signaling pathway through CB1 receptors-dependent way in primary cultured CN neurons.

Our study reveals the therapeutic potential for 2-AG for the treatment of neurodegenerative diseases, such as AD.”

http://www.ncbi.nlm.nih.gov/pubmed/25007951

Effect of Homocysteine on Voltage-Gated Sodium Channel Currents in Primary Cultured Rat Caudate Nucleus Neurons and Its Modulation by 2-Arachidonylglycerol.

“Homocysteine (Hcy) is an important risk factor for Alzheimer’s disease (AD) and other neurodegenerative diseases. Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid, has been shown to exhibit neuroprotective effects from many stimuli in the central nervous system (CNS).

Furthermore, it has been reported that voltage-gated sodium channels (VGSCs) are the common targets of many neuronal damages and drugs.

However, it is still not clear whether VGSCs are involved in the neurotoxicity of Hcy and the neuroprotective effect of 2-AG in CN neurons. In the present study, whole-cell patch clamp recording was used to invest the action of Hcy on sodium currents in primary cultured rat CN neurons and its modulation by 2-AG.

The results showed that in cultured CN neurons, pathological concentration of Hcy (100 μM) significantly increased the voltage-gated sodium currents (I Na) and produced a hyperpolarizing shift in the activation-voltage curve of I Na.

The further data demonstrated 2-AG is capable of suppressing elevation of Hcy-induced increase in I Na and hyperpolarizing shift of activation curves most partly through CB1 receptor-dependent way.

Our study provides a better understanding of Hcy-associated neurological disorders and suggests the therapeutic potential for 2-AG for the treatment of these diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26179279

Cannabinoid and nitric oxide signalling interplay in the modulation of hippocampal hyperexcitability: study on electrophysiological and behavioural models of temporal lobe epilepsy in the rat.

“A growing bulk of evidence suggests that cannabinoid system plays a pivotal role in the control of hyperexcitability phenomena.

Notwithstanding, the anticonvulsant action of cannabinoids has not been fully addressed, in particular the involvement of potential cellular neuromodulators, for instance nitric oxide.

In the current study, we focused on two distinct rat models of temporal lobe epilepsy, the Maximal Dentate Activation and the Pilocarpine-induced acute seizures, providing both electrophysiological and behavioural data on cannabinoid and nitrergic system interplay.

MDA study showed that these drugs protected animals in a dose-dependent manner from electrically-induced epileptiform discharges.

In the light of this, our findings suggest a putative antagonism between CBr-activated pathway and NO signalling in the context of neuronal hyperexcitability and contribute to elucidate possible synaptic processes underlying neuroprotective properties of cannabinoids, with a view to better integrate antiepileptic therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/26135674

CB2 receptor agonists protect human dopaminergic neurons against damage from HIV-1 gp120.

Logo of plosone

“The global pandemic of HIV infection currently afflicts 34 million individuals, has killed over 25 million people since 1981, and is the cause of death in an estimated 1.8 million people per year.

Despite the therapeutic impact of anti-retroviral therapy, HIV-1-associated neurocognitive disorder (HAND) remains a serious threat to AIDS patients…

Synthetic cannabinoids inhibit HIV-1 expression in human microglia, suppress production of inflammatory mediators in human astrocytes, and there is substantial literature demonstrating the neuroprotective properties of cannabinoids in other neuropathogenic processes.

Based on these data, experiments were designed to test the hypothesis that synthetic cannabinoids will protect dopaminergic neurons against the toxic effects of the HIV-1 protein gp120. Using a human mesencephalic neuronal/glial culture model…

These data suggest that synthetic cannabinoids are capable of protecting human dopaminergic neurons from gp120 in a variety of ways, acting principally through the CB2 receptors and microglia.

Overall, this study confirms that gp120 is capable of damaging human dopaminergic neurons, that this damage involves human microglia, and that synthetic cannabinoids can alleviate this damage through mechanisms involving human microglia.

Thus, the results of these experiments set the stage for further studies designed to tease out the role human microglia have in the mechanisms underlying the toxic effects of HIV-1 on human dopaminergic neurons and understanding the microglial-centered mechanisms underlying the protective effects of selected synthetic cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798286/

Ultralow doses of cannabinoid drugs protect the mouse brain from inflammation-induced cognitive damage.

“In our previous studies, we found that a single ultralow dose of tetrahydrocannabinol (THC)… protects the brain from different insults that cause cognitive deficits.

Because various insults may trigger a neuroinflammatory response that leads to secondary damage to the brain, the current study tested whether this extremely low dose of THC could protect the brain from inflammation-induced cognitive deficits…

Our results suggest that an ultralow dose of THC that lacks any psychotrophic activity protects the brain from neuroinflammation-induced cognitive damage and might be used as an effective drug for the treatment of neuroinflammatory conditions, including neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/25042014