Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies.

“Anandamide (AEA) is an endocannabinoid (EC) that modulates multiple functions in the CNS and that is released in areas of injury, exerting putative neuroprotective actions.

In the present study, we have used intravital microscopy to analyze the role of the EC system in the glial response against an acute insult…

In summary, these findings demonstrate that AEA modifies glial functions by promoting an enhanced pro-inflammatory glial response in the brain.”

http://www.ncbi.nlm.nih.gov/pubmed/25917763

The endocannabinoid system as a target for the treatment of neurodegenerative disease.

Logo of brjpharm

“The Cannabis sativa plant has been exploited for medicinal, agricultural and spiritual purposes in diverse cultures over thousands of years.

Cannabis has been used recreationally for its psychotropic properties, while effects such as stimulation of appetite, analgesia and anti-emesis have lead to the medicinal application of cannabis.

Indeed, reports of medicinal efficacy of cannabis can been traced back as far as 2700 BC, and even at that time reports also suggested a neuroprotective effect of the cultivar.

…alterations in the endocannabinoid system have been extensively investigated in a range of neurodegenerative disorders.

In this review we examine the evidence implicating the endocannabinoid system in the cause, symptomatology or treatment of neurodegenerative disease. We examine data from human patients and compare and contrast this with evidence from animal models of these diseases. On the basis of this evidence we discuss the likely efficacy of endocannabinoid-based therapies in each disease context.

There has been anecdotal and preliminary scientific evidence of cannabis affording symptomatic relief in diverse neurodegenerative disorders. These include multiple sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases, and amyotrophic lateral sclerosis.

This evidence implied that hypofunction or dysregulation of the endocannabinoid system may be responsible for some of the symptomatology of these diseases.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931550/

Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders.

“Cannabidiol (CBD) is the main non-psychotropic component of the glandular hairs of Cannabis sativa.

It displays a plethora of actions including anticonvulsive, sedative, hypnotic, antipsychotic, antiinflammatory and neuroprotective properties.

However, it is well established that CBD produces its biological effects without exerting significant intrinsic activity upon cannabinoid receptors.

For this reason, CBD lacks the unwanted psychotropic effects characteristic of marijuana derivatives, so representing one of the bioactive constituents of Cannabis sativa with the highest potential for therapeutic use.

The present review reports the pharmacological profile of CBD and summarizes results from preclinical and clinical studies utilizing CBD, alone or in combination with other phytocannabinoids, for the treatment of a number of CNS disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/18844286

The role of cannabinoids and leptin in neurological diseases.

“Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer’s, Parkinson’s, Huntington’s, multiple sclerosis and epilepsy.

Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear.

Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides.

Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson’s and Alzheimer’s.

Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases.

Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.”

Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinson’s disease.

“Inflammation is an important pathogenic factor in Parkinson’s disease (PD), so that it can contribute to kill dopaminergic neurons of the substantia nigra and to enhance the dopaminergic denervation of the striatum.

The cannabinoid type-2 (CB2) receptor has been investigated as a potential anti-inflammatory and neuroprotective target in different neurodegenerative disorders, but still limited evidence has been collected in PD.

Here, we show for the first time that CB2 receptors are elevated in microglial cells recruited and activated at lesioned sites in the substantia nigra of PD patients compared to control subjects.

Using this experimental model, we recently described a much more intense deterioration of tyrosine hydroxylase (TH)-containing nigral neurons in CB2 receptor-deficient mice compared to wild-type animals, supporting a potential neuroprotective role for this receptor. In the present study, we further explored this issue…

In conclusion, we have provided the first evidence on the up-regulation of CB2receptors in glial elements in postmortem tissues of PD patients, which has been confirmed in an inflammatory model of this disease. In addition, we have provided evidence on the benefits derived from their activation in relation with the activation of microglial cells, the infiltration of macrophages and also certain capability of these cells to generate proinflammatory factors.”

http://www.ncbi.nlm.nih.gov/pubmed/25863279

http://www.thctotalhealthcare.com/category/parkinsons-disease/

[Protective effect of paeoniflorin on the hippocampus in rats with cerebral ischemia-reperfusion through activating cannabinoid receptor 2].

Objective:

To investigate the protective effect of paeoniflorin on hippocampal neurons in rats subjected to cerebral ischemia and reperfusion through activating cannabinoid receptor 2 (CBR2).

Conclusion:

CBR2 may participate in the protective effect of paeoniflorin on hippocampal neurons of cerebral ischemia-reperfusion rat models.”

http://www.ncbi.nlm.nih.gov/pubmed/25854559

http://www.ncbi.nlm.nih.gov/pubmed/?term=Paeoniflorin

http://www.ncbi.nlm.nih.gov/pubmed/?term=Paeonia+lactiflora

http://en.wikipedia.org/wiki/Paeonia_lactiflora

 

 

Palmitoyl Serine: An Endogenous Neuroprotective Endocannabinoid-Like Entity After Traumatic Brain Injury.

“The endocannabinoid (eCB) system helps recovery following traumatic brain injury (TBI).

Treatment with 2-arachidonoylglycerol (2-AG), a cerebral eCB ligand, was found to ameliorate the secondary damage.

Interestingly, the fatty acid amino acid amide (FAAA) N-arachidonoyl-L-serine (AraS) exerts similar eCB dependent neuroprotective. The present study aimed to investigate the effects of the FAAA palmitoyl-serine (PalmS) following TBI.

We suggest that the neuroprotective action of PalmS is mediated by indirect activation of the eCB receptors following TBI. One such mechanism may involve receptor palmitoylation which has been reported to result in structural stabilization of the receptors and to an increase in their activity. Further research is required in order to establish this assumption.”

http://www.ncbi.nlm.nih.gov/pubmed/25721934

http://www.thctotalhealthcare.com/category/brain-trauma/

Changes in the endocannabinoid signaling system in CNS structures of TDP-43 transgenic mice: relevance for a neuroprotective therapy in TDP-43-related disorders.

“Because of their neuroprotective properties, cannabinoids are being investigated in neurodegenerative disorders, mainly in preclinical studies. These disorders also include amyotrophic lateral sclerosis (ALS), a degenerative disease produced by the damage of the upper and lower motor neurons leading to muscle denervation, atrophy and paralysis.

The studies with cannabinoids in ALS have been conducted exclusively in a transgenic mouse model bearing mutated forms of human superoxide dismutase-1, the first gene that was identified in relation with ALS.

The present study represents the first attempt to investigate the endocannabinoid system in an alternative model, the transgenic mouse model of TAR-DNA binding protein-43 (TDP-43), a protein related to ALS and also to frontotemporal dementia…

In conclusion, our data support the idea that the endocannabinoid signaling system, in particular the CB2 receptor, may serve for the development of a neuroprotective therapy in TDP-43-related disorders. We are presently engaged in pharmacological experiments to investigate this possibility.”

http://www.ncbi.nlm.nih.gov/pubmed/25819934

http://www.thctotalhealthcare.com/category/amyotrophic-lateral-sclerosis-als-lou-gehrigs-disease/

NEUROPROTECTIVE EFFECTS OF CANNABIS SATIVA ALCOHOLIC EXTRACT AGAINST SPINAL ALPHA MOTONEURONS DEGENERATION IN MALE TYPE II DIABETIC RATS

“Diabetic neourophaty is one of the long-term usual outcomes of diabetes.

According to anti-tumor, anti-diabetic and anti-oxidant effects of Cannabis sativa, the aim of this research was to investigate the effect of Cannabis sativa alcoholic extract on Alpha motoneurons degeneration after sciatic nerve compression in diabetic rats…

Conclusion: Using alcoholic extract of Cannabis sativa as a neuroprotective agent can prevent the progression of neural system disorders as a result of hyperglycemia.”

http://en.journals.sid.ir/ViewPaper.aspx?ID=278407

http://www.thctotalhealthcare.com/category/diabetes/

Neuroprotective Effect of(−)Δ9-Tetrahydrocannabinol and Cannabidiol in N-Methyl-d-Aspartate-Induced Retinal Neurotoxicity

“In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death.

In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic Δ9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation…

The neuroprotection by THC and CBD was because of attenuation of peroxynitrite.

The effect of THC was in part mediated by the cannabinoid receptor CB1.

These results suggest the potential use of CBD as a novel topical therapy for the treatment of glaucoma.

THC and CBD, are similarly potent antioxidants that protect neuron cultures from glutamate-induced cell death or oxidative stress…

In addition to possessing neuroprotective or retinal neuroprotective activity… cannabinoids, such as THC, have been demonstrated to induce dose-related reductions in intraocular pressure in human and in animal models. 

This suggests that cannabinoids may offer a multifaceted therapy for glaucoma.

In conclusion, our results indicate that lipid peroxidation and ONOO− formation play an important role in NMDA-induced retinal neurotoxicity and cell loss in the retina, and that THC and CBD, by reducing the formation of these compounds, are effective neuroprotectants.

The present studies could form the basis for the development of new topical therapies for the treatment of glaucoma.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892413/

http://www.thctotalhealthcare.com/category/glaucoma-2/