“Cannabidiol (CBD) has been shown to exhibit anti-inflammatory, antioxidant and neuroprotective properties. Unlike Δ(9)-tetrahydrocannabinol (THC), CBD is devoid of psychotropic effects and has very low affinity for both cannabinoid receptors, CB(1) and CB(2). We have previously reported that CBD and THC have different effects on anti-inflammatory pathways in lipopolysaccharide-stimulated BV-2 microglial cells, in a CB(1)/CB(2) independent manner. Moreover, CBD treatment of BV-2 cells, was found to induce a robust change in the expression of genes related to oxidative stress, glutathione deprivation and inflammation. Many of these genes were shown to be controlled by Nrf2 and ATF4 transcription factors. Using the Illumina MouseRef-8 BeadChip platform, DAVID Bioinformatics and Ingenuity Pathway Analysis, we identified functional sets of genes and networks affected by CBD. A subset of genes was found to be regulated by the metal responsive element (MRE)-binding transcription factor-1 (MTF-1) and is shown to be related to zinc homeostasis. We found that CBD upregulates the expression of the mRNAs for metallothionein 2 (Mt2), N-myc-downstream regulated gene 1 and matrix metalloproteinase 23 as well as of the zinc transporters ZnT1/Slc30a1 and Zip4/Slc39a4 but downregulates the expression of the mRNA for the zinc transporter Zip10/Slc39a10 as well as for the zinc finger protein 472. Among these genes, ZnT1, Mt2 and the zinc transporters ZIPs are known to function together to control the intracellular zinc concentration. These results show that CBD, but much less so THC, affects the expression of genes involved in zinc homeostasis and suggest that the regulation of zinc levels could have an important role through which CBD may exert its antioxidant and anti-inflammatory effects.”
Tag Archives: neuroprotective
Cannabidiol: a promising drug for neurodegenerative disorders?
“Neurodegenerative diseases represent, nowadays, one of the main causes of death in the industrialized country. They are characterized by a loss of neurons in particular regions of the nervous system. It is believed that this nerve cell loss underlies the subsequent decline in cognitive and motor function that patients experience in these diseases. A range of mutant genes and environmental toxins have been implicated in the cause of neurodegenerative disorders but the mechanism remains largely unknown. At present, inflammation, a common denominator among the diverse list of neurodegenerative diseases, has been implicated as a critical mechanism that is responsible for the progressive nature of neurodegeneration.
Since, at present, there are few therapies for the wide range of neurodegenerative diseases, scientists are still in search of new therapeutic approaches to the problem. An early contribution of neuroprotective and antiinflammatory strategies for these disorders seems particularly desirable because isolated treatments cannot be effective.
In this contest, marijuana derivatives have attracted special interest, although these compounds have always raised several practical and ethical problems for their potential abuse. Nevertheless, among Cannabis compounds, cannabidiol (CBD), which lacks any unwanted psychotropic effect, may represent a very promising agent with the highest prospect for therapeutic use.”
Cannabidiol Reduces Aβ-Induced Neuroinflammation and Promotes Hippocampal Neurogenesis through PPARγ Involvement
“CBD blunted neuroinflammation sustained by astrocytes through PPARγ selective activation in vitro and in vivo.
Results from the present study prove the selective involvement of PPARγ in the anti-inflammatory and neuroprotective effects of CBD here observed either in vitro and in vivo. In addition, CBD significantly promoted neurogenesis in Aβ injured rat hippocampi, much expanding its already wide spectrum of beneficial actions exerted in AD models, a non negligible effect, due to its capability to activate PPARγ.
In conclusion, results of the present research demonstrate that CBD may exert protective functions through a PPARγ dependent activation, which leads to a reduction in reactive gliosis and consequently in neurodegeneration. Moreover, in the current experimental conditions this phytocannabinoid appears to stimulate neurogenesis since it increases DCX immunopositive cell proliferation rate in rat DG.
Innovative therapeutic approaches which could significantly improve AD course require new molecules that will be able to have an impact on different pathological pathways, which converge at the progressive neurological decline. CBD has shown a capability to profoundly reduce reactive astrogliosis and to guarantee both direct and indirect neuronal protection in Aβ induced neuroinflammation/neurodegeration. So far, the lack of understanding of the precise molecular mechanism involved in CBD pharmacological actions, has had limited interest and has puzzled investigators.
Currently, findings of the present study throw some light on the issue, and frame CBD as a new PPARγ activator.”
WIN55212-2 attenuates amyloid-beta-induced neuroinflammation in rats through activation of cannabinoid receptors and PPAR-γ pathway.
“Cannabinoids have been shown to exert neuroprotective effects in a plethora of neurodegenerative conditions. Over the past decade, some studies demonstrate that cannabinoids can interact with nuclear peroxisome proliferator-activated receptors (PPARs). We investigated protective properties of WIN55212-2 (WIN, a non-selective cannabinoid receptor agonist) in beta-amyloid (Aβ)-induced neurodegeneration in rat hippocampus and possible involvement of PPAR-gamma (PPAR-γ).
WIN administration significantly improved memory function…
Our findings indicate that WIN exerts neuroprotective and anti-inflammatory actions against Aβ damage through both CB₁ and CB₂ receptors. Of great note, both direct and CB₁-mediated increase in PPAR-γ signaling also contributes to WIN-induced neuroprotection.”
Activation of the CB(2) receptor system reverses amyloid-induced memory deficiency.
“Cannabinoid type 2 (CB(2)) agonists are neuroprotective and appear to play modulatory roles in neurodegenerative processes in Alzheimer’s disease. We have studied the effect of 1-((3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl) carbonyl) piperidine (MDA7)-a novel selective CB(2) agonist that lacks psychoactivity-on ameliorating the neuroinflammatory process, synaptic dysfunction, and cognitive impairment
Our findings suggest that MDA7 is an innovative therapeutic approach for the treatment of Alzheimer’s disease.”
Cannabinoid CB2 receptors in human brain inflammation.
“CB2 receptors in neuroinflammatory conditions of the human brain.
“CB2 receptors have been found to be present in the CNS, thus offering new opportunities for the pharmacological use of cannabinoid agents. Furthermore, the fact that their expression is increased by inflammatory stimuli suggests that they may be involved in the pathogenesis and/or in the endogenous response to injury. Data obtained in vitro and in animal models show that CB2 receptors may be part of the general neuroprotective action of the ECS…
The anti-inflammatory effects triggered by the activation of the CB2 receptor make it an attractive target for the development of novel anti-inflammatory therapies.”
Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression.
“Pharmacological inhibition of beta-amyloid (Aβ) induced reactive gliosis may represent a novel rationale to develop drugs able to blunt neuronal damage and slow the course of Alzheimer’s disease (AD). Cannabidiol (CBD), the main non-psychotropic natural cannabinoid, exerts in vitro a combination of neuroprotective effects in different models of Aβ neurotoxicity. The present study, performed in a mouse model of AD-related neuroinflammation, was aimed at confirming in vivo the previously reported antiinflammatory properties of CBD.
Cannabidiol (CBD), the main non-psychotropic component of the glandular hairs of Cannabis sativa, exhibits a plethora of actions including anti-convulsive, sedative, hypnotic, anti-psychotic, anti-nausea, anti-inflammatory and anti-hyperalgesic properties. CBD has been proved to exert in vitro a combination of neuroprotective effects in Aβ-induced neurotoxicity, including anti-oxidant and anti-apoptotic effects, tau protein hyperphosphorylation inhibition through the Wnt pathway, and marked decrease of inducible nitric oxide synthase (iNOS) protein expression and nitrite production in Aβ-challenged differentiated rat neuronal cells.
In spite of the large amount of data describing the significant neuroprotective and anti-inflammatory properties of CBD in vitro, to date no evidence has been provided showing similar effects in vivo. To achieve this, the present study investigated the potential anti-inflammatory effect of CBD in a mouse model of AD-related neuroinflammation induced by the intrahippocampal injection of the human Aβ (1–42) fragment.
The results of the present study confirm in vivo anti-inflammatory actions of CBD, emphasizing the importance of this compound as a novel promising pharmacological tool capable of attenuating Aβ evoked neuroinflammatory responses.
…on the basis of the present results, CBD, a drug well tolerated in humans, may be regarded as an attractive medical alternative for the treatment of AD, because of its lack of psychoactive and cognitive effects.”
Read more: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189818/
The endocannabinoid system in targeting inflammatory neurodegenerative diseases.
“The classical divide between degenerative and inflammatory disorders of the CNS is vanishing as accumulating evidence shows that inflammatory processes are important in the pathophysiology of primarily degenerative disorders, and neurodegeneration complicates primarily inflammatory diseases of the brain and spinal cord. Here, we review the contribution of degenerative and inflammatory processes to CNS disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis and HIV-associated dementia.
An early combination of neuroprotective and anti-inflammatory approaches to these disorders seems particularly desirable because isolated treatment of one pathological process might worsen another.
We also discuss the apparently unique opportunity to modify neurodegeneration and neuroinflammation simultaneously by pharmacological manipulation of the endocannabinoid system in the CNS and in peripheral immune cells. Current knowledge of this system and its involvement in the above CNS disorders are also reviewed.”
Cannabis May Offer Alzheimer’s Hope, Study Says
“Marijuana compounds offer an alternative approach for treating the neurodegeneration associated with Alzheimer’s disease (AD)…
Investigators at the Trinity College, Institute for Neuroscience, in Dublin report that cannabinoids have been shown to protect neurons from the deleterious effects of amyloid plaque – the primary pathological hallmark of Alzheimer’s. Cannabinoids also demonstrate a propensity to reduce oxidative stress and inflammation, while also promoting neurogenesis (the birth of new neuronal cells), authors report.
Authors write: “In recent years the proclivity of cannabinoids to exert a neuroprotective influence has received substantial interest as a means to mitigate the symptoms of neurodegenerative conditions. … [C]annabinoids offer a multi-faceted approach for the treatment of Alzheimer’s disease by providing neuroprotection and reducing neuroinflammation, whilst simultaneously supporting the brain’s intrinsic repair mechanisms by augmenting neurotrophin expression and enhancing neurogenesis. … Manipulation of the cannabinoid pathway offers a pharmacological approach for the treatment of AD that may be efficacious than current treatment regimens.”
Preclinical studies have demonstrated that cannabinoids can delay disease progression in animal models of several neurodegenerative diseases, including multiple sclerosis and amyotrophic lateral sclerosis (Lou Gehrig’s disease).”-
Paul Armentano, NORML http://norml.org/news/2007/09/20/cannabis-may-offer-alzheimers-hope-study-says
Full text of the study, “Alzheimer’s disease; taking the edge off with cannabinoids?” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190031/
Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease.
“Microglial activation is an invariant feature of Alzheimer’s disease (AD). It is noteworthy that cannabinoids are neuroprotective by preventing β-amyloid (Aβ)-induced microglial activation both in vitro and in vivo… the phytocannabinoid cannabidiol (CBD) has shown anti-inflammatory properties in different paradigms…
Cannabinoids, whether plant-derived, synthetic, or endocannabinoids, exert their functions through activation of cannabinoid receptors, two of which have been well characterized to date: CB1 and CB2. Cannabinoids are neuroprotective against excitotoxicity and acute brain damage, both in vitro and in vivo. Several mechanisms account for the neuroprotection afforded by this type of drug such as blockade of excitotoxicity, reduction of calcium influx, antioxidant properties of the compounds, or enhanced trophic factor support. A decrease in proinflammatory mediators brought about by cannabinoids may be also involved in their neuroprotection… Cannabidiol (CBD), the major plant-derived nonpsychotropic constituent of marijuana, is of potential therapeutic interest in different disease conditions (e.g., inflammation)…
…this kind of drug with neuroprotective and anti-inflammatory effects may be of interest in the prevention of AD inflammation, in particular CB2-selective agonists, which are devoid of psychoactive effects…
Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo…
CBD is able to modulate microglial cell function in vitro and induce beneficial effects in an in vivo model of AD.
Given that CBD lacks psychoactivity, it may represent a novel therapeutic approach for this neurological disease.”