“In the sports domain, cannabis is prohibited by the World Anti-Doping Agency (WADA) across all sports in competition since 2004. The few studies on physical exercise and cannabis focused on the main compound i.e. Δ9-tetrahydrocannabinol. Cannabidiol (CBD) is another well-known phytocannabinoid present in dried or heated preparations of cannabis. Unlike Δ9-tetrahydrocannabinol, CBD is non-intoxicating but exhibits pharmacological properties that are interesting for medical use.
The worldwide regulatory status of CBD is complex and this compound is still a controlled substance in many countries. Interestingly, however, the World Anti-Doping Agency removed CBD from the list of prohibited substances – in or out of competition – since 2018. This recent decision by the WADA leaves the door open for CBD use by athletes.
In the present opinion article we wish to expose the different CBD properties discovered in preclinical studies that could be further tested in the sport domain to ascertain its utility. Preclinical studies suggest that CBD could be useful to athletes due to its anti-inflammatory, analgesic, anxiolytic, neuroprotective properties and its influence on the sleep-wake cycle. Unfortunately, almost no clinical data are available on CBD in the context of exercise, which makes its use in this context still premature.”
https://www.ncbi.nlm.nih.gov/pubmed/32205233
“Athletes could benefit from CBD to manage pain, inflammation and the swelling processes associated with injury. CBD could be useful to manage anxiety, fear memory process, sleep and sleepiness in athletes. CBD could be interesting for the management of mild traumatic brain injury and chronic traumatic encephalopathy.”
https://www.sciencedirect.com/science/article/abs/pii/S1043661819326143?via%3Dihub

“Generally, the development and progression of neurodegenerative diseases are associated with advancing age, so they are usually diagnosed in late adulthood. A primary mechanism underlying the onset of neurodegenerative diseases is neuroinflammation. Based on this background, the concept of “neuroinflammaging” has emerged. In this deregulated neuroinflammatory process, a variety of immune cells participate, especially glial cells, proinflammatory cytokines, receptors, and subcellular organelles including mitochondria, which are mainly responsible for maintaining redox balance at the cellular level. Senescence and autophagic processes also play a crucial role in the neuroinflammatory disease associated with aging.
“While medical and recreational cannabis use is becoming more frequent among older adults, the neurocognitive consequences of cannabis use in this age group are unclear. The aim of this literature review was to synthesize and evaluate the current knowledge on the association of cannabis use during older-adulthood with cognitive function and brain aging.
“Microglia, the resident immune cells of the central nervous system, mediate brain homeostasis by controlling neuronal proliferation/differentiation and synaptic activity. In response to external signals from neuropathological conditions, homeostatic (M0) microglia can adopt one of two activation states: the classical (M1) activation state, which secretes mediators of the proinflammatory response, and the alternative (M2) activation state, which presumably mediates the resolution of neuroinflammation and tissue repair/remodeling.
“Alzheimer’s disease (AD) is characterized by progressive cognitive decline and pathologically by the accumulation of amyloid-β (Aβ) and tau hyperphosphorylation causing neurodegeneration and neuroinflammation. Current AD treatments do not stop or reverse the disease progression, highlighting the need for more effective therapeutics.
“Herein, 11 general types of natural cannabinoids from Cannabis sativa as well as 50 (-)-CBD analogues with therapeutic potential were described. The underlying molecular mechanisms of CBD as a therapeutic candidate for epilepsy and neurodegenerative diseases were comprehensively clarified. CBD indirectly acts as an endogenous cannabinoid receptor agonist to exert its neuroprotective effects. CBD also promotes neuroprotection through different signal transduction pathways mediated indirectly by cannabinoid receptors. Furthermore, CBD prevents the glycogen synthase kinase 3β (GSK-3β) hyperphosphorylation caused by Aβ and may be developed as a new therapeutic candidate for Alzheimer’s disease.”
“In the process of neonatal encephalopathy, oxidative stress and neuroinflammation have a prominent role after perinatal asphyxia. With the exception of therapeutic hypothermia, no therapeutic interventions are available in the clinical setting to target either the oxidative stress or inflammation, despite the high prevalence of neurological sequelae of this devastating condition.