In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma.

“Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance.

Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects.

We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ(9)-tetrahydrocannabinol (thc) and cannabidiol (cbd)…

Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis. Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts.

 

Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl.”

http://www.ncbi.nlm.nih.gov/pubmed/27022310

“Neuroblastomas are cancers that start in early nerve cells (called neuroblasts) of the sympathetic nervous system, so they can be found anywhere along this system.”  http://www.cancer.org/cancer/neuroblastoma/detailedguide/neuroblastoma-what-is-neuroblastoma

Endocannabinoids and Cancer.

“A large body of evidence shows that cannabinoids, in addition to their well-known palliative effects on some cancer-associated symptoms, can reduce tumour growth in animal models of cancer.

They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival.

In addition, cannabinoids inhibit angiogenesis and cell proliferation in different types of tumours in laboratory animals.

By contrast, little is known about the biological role of the endocannabinoid system in cancer physio-pathology, and several studies suggest that it may be over-activated in cancer.

In this review, we discuss our current understanding of cannabinoids as antitumour agents, focusing on recent advances in the molecular mechanisms of action, including resistance mechanisms and opportunities for combination therapy approaches.”

http://www.ncbi.nlm.nih.gov/pubmed/26408171

Critical appraisal of the potential use of cannabinoids in cancer management

“Cannabinoids have been attracting a great deal of interest as potential anticancer agents. Originally derived from the plant Cannabis sativa, there are now a number of endo-, phyto- and synthetic cannabinoids available. This review summarizes the key literature to date around the actions, antitumor activity, and mechanisms of action for this broad range of compounds…

Two therapeutic avenues exist for the development of cannabinoids as anticancer agents. As antiemetic and analgesic compounds, this class of compounds has been explored in terms of palliative care. More recently, cannabinoid agonists and antagonists have been screened for potential direct antitumorigenic properties.

… results suggest that overall the cannabinoids affect multiple cellular signaling pathways, which means they have the potential to decrease cancer development, growth, and metastasis.

Overall, the cannabinoids may show future promise in the treatment of cancer, but there are many significant hurdles to be overcome. There is much still to be learned about the action of the cannabinoids and the endocannabinoid system.

It is a distinct possibility that the cannabinoids may have a place in the future treatment of cancer.”

Full Text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770515/

Pharmacological synergism between cannabinoids and paclitaxel in gastric cancer cell lines.

“Orally applicable Delta9-tetrahydrocannabinol and its synthetic derivatives have been used as antiemetic drugs during chemotherapy in cancer patients.

 However, it is not well known how cannabinoids influence the effects of chemotherapeutic agents on malignant tumors. In this study, we investigated how the endogenous cannabinoid anandamide (AEA) changes the effect of paclitaxel on gastric cancer cell lines.

 In the human gastric cancer cell line, HGC-27, which express cannabinoid receptor 1 (CB1), AEA stimulated proliferation at concentrations under 1 microM, while it strongly suppressed proliferation through the induction of apoptosis at 10 microM. This bimodal effect was reproduced by a selective CB1 agonist, arachidonyl-2-chloroethylamide, although the effects were less marked. When AEA was used with paclitaxel, AEA at 10 microM synergistically enhanced the cytotoxic effect of paclitaxel, whereas it showed no significant effect at lower concentrations. Flow cytometric analysis revealed that addition of 10 microM AEA synergistically enhanced paclitaxel-induced apoptosis, possibly through the activation of caspase-3, -8, and -9.

Our results suggest that cannabinoids could be a good palliative agent for cancer patients receiving paclitaxel.”

http://www.ncbi.nlm.nih.gov/pubmed/19394652

Dronabinol for supportive therapy in patients with malignant melanoma and liver metastases.

“Loss of appetite and nausea can reduce the quality of life of patients with malignant melanoma and liver metastases. Often established antiemetic drugs fail to bring relief. Tetrahydrocannabinol (THC, Marinol), which is the active agent of Indian hemp, has been used successfully in this situation for other malignant tumors.

PATIENTS AND METHODS:

We treated 7 patients with hematogenous metastatic melanoma and liver metastases suffering from extensive loss of appetite and nausea supportively with dronabinol (Marinol. All of these patients had previously received standard antiemetic therapy without adequate relief. Dronabinol is a synthetic Delta-tetrahydrocannabinol. The drug was administered in capsule form. We evaluated the palliative effects of dronabinol with a special patient evaluation form, which was filled out at the beginning of the therapy and again after 4 weeks.

RESULTS:

The majority of patients described a significant increase in appetite and decrease in nausea. These effects remained for some weeks, but then decreased as metastases progressed and the general condition worsened. All of the patients experienced slight to moderate dizziness, but it was not sufficiently troubling to cause interruption or termination of therapy.

CONCLUSION:

Loss of appetite and nausea due to liver metastases of malignant melanoma can be treated in individual cases supportively with Dronabinol.”

http://www.ncbi.nlm.nih.gov/pubmed/16408219

Cannabinoids and gliomas.

Abstract

“Cannabinoids, the active components of Cannabis sativa L., act in the body by mimicking endogenous substances–the endocannabinoids–that activate specific cell surface receptors. Cannabinoids exert various palliative effects in cancer patients. In addition, cannabinoids inhibit the growth of different types of tumor cells, including glioma cells, in laboratory animals. They do so by modulating key cell signaling pathways, mostly the endoplasmic reticulum stress response, thereby inducing antitumoral actions such as the apoptotic death of tumor cells and the inhibition of tumor angiogenesis. Of interest, cannabinoids seem to be selective antitumoral compounds, as they kill glioma cells, but not their non-transformed astroglial counterparts. On the basis of these preclinical findings, a pilot clinical study of Delta(9)-tetrahydrocannabinol (THC) in patients with recurrent glioblastoma multiforme has been recently run. The good safety profile of THC, together with its possible growth-inhibiting action on tumor cells, justifies the setting up of future trials aimed at evaluating the potential antitumoral activity of cannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/17952650

Cannabinoids Inhibit the Vascular Endothelial Growth Factor Pathway in Gliomas

“Cannabinoids, the active components of Cannabis sativa L. (marijuana), and their derivatives exert a wide array of effects by activating their specific G protein-coupled receptors CB1 and CB2, which are normally engaged by a family of endogenous ligands–the endocannabinoids. Marijuana and its derivatives have been used in medicine for many centuries, and there is currently a renaissance in the study of the therapeutic effects of cannabinoids. Today, cannabinoids are approved to palliate the wasting and emesis associated with cancer and AIDS chemotherapy, and ongoing clinical trials are determining whether cannabinoids are effective agents in the treatment of pain, neurodegenerative disorders such as multiple sclerosis, and traumatic brain injury . In addition, cannabinoid administration to mice and/or rats induces the regression of lung adenocarcinomas, gliomas, thyroid epitheliomas, lymphomas, and skin carcinomas. These studies have also evidenced that cannabinoids display a fair drug safety profile and do not produce the generalized cytotoxic effects of conventional chemotherapies, making them potential antitumoral agents.” 

“Gliomas are one of the most malignant forms of cancer, resulting in the death of affected patients within 1–2 two years after diagnosis. Current therapies for glioma treatment are usually ineffective or just palliative. Therefore, it is essential to develop new therapeutic strategies for the management of glioblastoma multiforme, which will most likely require a combination of therapies to obtain significant clinical results. In line with the idea that anti-VEGF treatments constitute one of the most promising antitumoral approaches currently available, the present laboratory and clinical findings provide a novel pharmacological target for cannabinoid-based therapies.”

“The use of cannabinoids in medicine is limited by their psychoactive effects mediated by neuronal CB1 receptors. Although these adverse effects are within the range of those accepted for other medications, especially in cancer treatment, and tend to disappear with tolerance on continuous use, it is obvious that cannabinoid-based therapies devoid of side-effects would be desirable. As glioma cells express functional CB2 receptors, we used a selective CB2 ligand to target the VEGF pathway. Selective CB2 receptor activation in mice also inhibits the growth and angiogenesis of skin carcinomas.”

“Cannabinoids inhibit tumor angiogenesis…”

“Cannabinoids Inhibit the Vascular Endothelial Growth Factor Pathway in Gliomas”

“Because blockade of the VEGF pathway constitutes one of the most promising antitumoral approaches currently available, the present findings provide a novel pharmacological target for cannabinoid-based therapies.”

http://cancerres.aacrjournals.org/content/64/16/5617.full

A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme

“One of the most devastating forms of cancer is glioblastoma multiforme (grade IV astrocytoma), the most frequent class of malignant primary brain tumours. Current standard therapeutic strategies for the treatment of glioblastoma multiforme (surgical resection and focal radiotherapy) are only palliative…”

“The hemp plant Cannabis sativa L. produces approximately 60 unique compounds known as cannabinoids, of which Δ9-tetrahydrocannabinol (THC) is the most important owing to its high potency and abundance in cannabis. Δ9-Tetrahydrocannabinol exerts a wide variety of biological effects by mimicking endogenous substances – the so-called endocannabinoids – that bind to and activate specific cell surface receptors. cannabinoids have been proposed as potential antitumoral agents owing to their ability to inhibit the growth and angiogenesis of various types of tumour xenografts in animal models.”

“Here we report the first clinical study aimed at assessing cannabinoid antitumoral action, specifically a pilot phase I trial in which nine patients with recurrent glioblastoma multiforme were administered THC intratumoraly. The patients had previously failed standard therapy (surgery and radiotherapy) and had clear evidence of tumour progression. The primary end point of the study was to determine the safety of intracranial THC administration… Cannabinoid delivery was safe and could be achieved without overt psychoactive effects…. The fair safety profile of THC, together with its possible antiproliferative action on tumour cells reported here and in other studies, may set the basis for future trials aimed at evaluating the potential antitumoral activity of cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360617/

Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1.

JNCI: Journal of the National Cancer Institute

“Cannabinoids, in addition to having palliative benefits in cancer therapy, have been associated with anticarcinogenic effects. Although the antiproliferative activities of cannabinoids have been intensively investigated, little is known about their effects on tumor invasion.”

“Increased expression of TIMP-1 mediates an anti-invasive effect of cannabinoids. Cannabinoids may therefore offer a therapeutic option in the treatment of highly invasive cancers.”

“There is considerable evidence to suggest an important role for cannabinoids in conferring anticarcinogenic activities. In this study, we identified TIMP-1 as a mediator of the anti-invasive actions of MA, a hydrolysis-stable analog of the endocannabinoid anandamide, and THC, a plant-derived cannabinoid.”

“In conclusion, our results suggest that there exists a signaling pathway by which the binding of cannabinoids to specific receptors leads via intracellular MAPK activation to induction of TIMP-1 expression and subsequent inhibition of tumor cell invasion. To our knowledge, this is the first report of TIMP-1–dependent anti-invasive effects of cannabinoids.”

http://jnci.oxfordjournals.org/content/100/1/59.long

Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents.

Image result for Best Pract Res Clin Endocrinol Metab

“Cannabinoids (the active components of Cannabis sativa) and their derivatives have received renewed interest in recent years due to their diverse pharmacological activities. In particular, cannabinoids offer potential applications as anti-tumour drugs, based on the ability of some members of this class of compounds to limit cell proliferation and to induce tumour-selective cell death. Although synthetic cannabinoids may have pro-tumour effects in vivo due to their immunosuppressive properties, predominantly inhibitory effects on tumour growth and migration, angiogenesis, metastasis, and also inflammation have been described. Emerging evidence suggests that agonists of cannabinoid receptors expressed by tumour cells may offer a novel strategy to treat cancer. In this chapter we review the more recent results generating interest in the field of cannabinoids and cancer, and provide novel suggestions for the development, exploration and use of cannabinoid agonists for cancer therapy, not only as palliative but also as curative drugs.” https://www.ncbi.nlm.nih.gov/pubmed/19285265

“Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents” http://www.bprcem.com/article/S1521-690X(09)00005-0/abstract