The non-euphoric phytocannabinoid cannabidivarin counteracts intestinal inflammation in mice and cytokine expression in biopsies from UC pediatric patients.

Pharmacological Research“Patients with ulcerative colitis (UC) using marijuana have been reported to experience symptomatic benefit.

Cannabidivarin (CBDV) is a safe non-psychoactive phytocannabinoid able to activate TRPA1, a member of TRP channels superfamily, which plays a pivotal role in intestinal inflammation.

Here, we have investigated the potential intestinal anti-inflammatory effect of CBDV in mice and in biopsies from pediatric patients with active UC.

Our preclinical study shows that CBDV exerts intestinal anti-inflammatory effects in mice via TRPA1, and in children with active UC.

Since CBDV has a favorable safety profile in humans, it may be considered for possible clinical trials in patients with UC.”

https://www.ncbi.nlm.nih.gov/pubmed/31553934

https://linkinghub.elsevier.com/retrieve/pii/S1043661819311077

Cannabidiol Is a Novel Modulator of Bacterial Membrane Vesicles.

 Image result for frontiers in cellular and infection microbiology“Membrane vesicles (MVs) released from bacteria participate in cell communication and host-pathogen interactions.

Roles for MVs in antibiotic resistance are gaining increased attention and in this study we investigated if known anti-bacterial effects of cannabidiol (CBD), a phytocannabinoid from Cannabis sativa, could be in part attributed to effects on bacterial MV profile and MV release.

We found that CBD is a strong inhibitor of MV release from Gram-negative bacteria (E. coli VCS257), while inhibitory effect on MV release from Gram-positive bacteria (S. aureus subsp. aureus Rosenbach) was negligible. When used in combination with selected antibiotics, CBD significantly increased the bactericidal action of several antibiotics in the Gram-negative bacteria.

In addition, CBD increased antibiotic effects of kanamycin in the Gram-positive bacteria, without affecting MV release. CBD furthermore changed protein profiles of MVs released from E. coli after 1 h CBD treatment.

Our findings indicate that CBD may pose as a putative adjuvant agent for tailored co-application with selected antibiotics, depending on bacterial species, to increase antibiotic activity, including via MV inhibition, and help reduce antibiotic resistance.”

https://www.ncbi.nlm.nih.gov/pubmed/31552202

https://www.frontiersin.org/articles/10.3389/fcimb.2019.00324/full 

Potential of Cannabinoid Receptor Ligands as Treatment for Substance Use Disorders.

 “Substance use disorder (SUD) is a major public health crisis worldwide, and effective treatment options are limited.

During the past 2 decades, researchers have investigated the impact of a variety of pharmacological approaches to treat SUD, one of which is the use of medical cannabis or cannabinoids.

Significant progress was made with the discovery of rimonabant, a selective CB1 receptor (CB1R) antagonist (also an inverse agonist), as a promising therapeutic for SUDs and obesity. However, serious adverse effects such as depression and suicidality led to the withdrawal of rimonabant (and almost all other CB1R antagonists/inverse agonists) from clinical trials worldwide in 2008.

Since then, much research interest has shifted to other cannabinoid-based strategies, such as peripheral CB1R antagonists/inverse agonists, neutral CB1R antagonists, allosteric CB1R modulators, CB2R agonists, fatty acid amide hydrolase (FAAH) inhibitors, monoacylglycerol lipase (MAGL) inhibitors, fatty acid binding protein (FABP) inhibitors, or nonaddictive phytocannabinoids with CB1R or CB2R-binding profiles, as new therapeutics for SUDs.

In this article, we first review recent progress in research regarding the endocannabinoid systems, cannabis reward versus aversion, and the underlying receptor mechanisms. We then review recent progress in cannabinoid-based medication development for the treatment of SUDs.

As evidence continues to accumulate, neutral CB1R antagonists (such as AM4113), CB2R agonists (JWH133, Xie2-64), and nonselective phytocannabinoids (cannabidiol, β-caryophyllene, ∆9-tetrahydrocannabivarin) have shown great therapeutic potential for SUDs, as shown in experimental animals.

Several cannabinoid-based medications (e.g., dronabinol, nabilone, PF-04457845) that entered clinical trials have shown promising results in reducing withdrawal symptoms in cannabis and opioid users.”

https://www.ncbi.nlm.nih.gov/pubmed/31549358

https://link.springer.com/article/10.1007%2Fs40263-019-00664-w

The Endocannabinoid System of Animals.

 animals-logo“The endocannabinoid system has been found to be pervasive in mammalian species. It has also been described in invertebrate species as primitive as the Hydra. Insects, apparently, are devoid of this, otherwise, ubiquitous system that provides homeostatic balance to the nervous and immune systems, as well as many other organ systems.

The endocannabinoid system (ECS) has been defined to consist of three parts, which include (1) endogenous ligands, (2) G-protein coupled receptors (GPCRs), and (3) enzymes to degrade and recycle the ligands. Two endogenous molecules have been identified as ligands in the ECS to date.

The endocannabinoids are anandamide (arachidonoyl ethanolamide) and 2-AG (2-arachidonoyl glycerol). Two G-coupled protein receptors (GPCR) have been described as part of this system, with other putative GPC being considered.

Coincidentally, the phytochemicals produced in large quantities by the Cannabis sativa L plant, and in lesser amounts by other plants, can interact with this system as ligands. These plant-based cannabinoids are termed phytocannabinoids.

The precise determination of the distribution of cannabinoid receptors in animal species is an ongoing project, with the canine cannabinoid receptor distribution currently receiving the most interest in non-human animals.”

https://www.ncbi.nlm.nih.gov/pubmed/31527410

https://www.mdpi.com/2076-2615/9/9/686

Cannabinoids in Gynecological Diseases

Related image“The endocannabinoid system (ECS) is a multifunctional homeostatic system involved in many physiological and pathological conditions. The ligands of the ECS are the endo­cannabinoids, whose actions are mimicked by exogenous cannabinoids, such as phytocannabinoids and synthetic cannabinoids. Responses to the ligands of the ECS are mediated by numerous receptors like the classical cannabinoid receptors (CB1 and CB2) as well as ECS-related receptors, e.g., G protein-coupled receptors 18 and 55 (GPR18 and GPR55), transient receptor potential ion channels, and nuclear peroxisome proliferator-activated receptors. The ECS regulates almost all levels of female reproduction, starting with oocyte production through to parturition. Dysregulation of the ECS is associated with the development of gynecological disorders from fertility disorders to cancer. Cannabinoids that act at the ECS as specific agonists or antagonists may potentially influence dysregulation and, therefore, represent new therapeutic options for the therapy of gynecological disorders.”

https://www.karger.com/Article/FullText/499164

Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1.

Redox Biology“Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that attracted a great attention for its therapeutic potential against different pathologies including skin diseases.

However, although the efficacy in preclinical models and the clinical benefits of CBD in humans have been extensively demonstrated, the molecular mechanism(s) and targets responsible for these effects are as yet unknown.

Herein we characterized at the molecular level the effects of CBD on primary human keratinocytes using a combination of RNA sequencing (RNA-Seq) and sequential window acquisition of all theoretical mass spectrometry (SWATH-MS).

Functional analysis revealed that CBD regulated pathways involved in keratinocyte differentiation, skin development and epidermal cell differentiation among other processes. In addition, CBD induced the expression of several NRF2 target genes, with heme oxygenase 1 (HMOX1) being the gene and the protein most upregulated by CBD. CRISPR/Cas9-mediated genome editing, RNA interference and biochemical studies demonstrated that the induction of HMOX1 mediated by CBD, involved nuclear export and proteasomal degradation of the transcriptional repressor BACH1.

Notably, we showed that the effect of BACH1 on HMOX1 expression in keratinocytes is independent of NRF2. In vivo studies showed that topical CBD increased the levels of HMOX1 and of the proliferation and wound-repair associated keratins 16 and 17 in the skin of mice.

Altogether, our study identifies BACH1 as a molecular target for CBD in keratinocytes and sets the basis for the use of topical CBD for the treatment of different skin diseases including atopic dermatitis and keratin disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31518892

https://www.sciencedirect.com/science/article/pii/S2213231719306470?via%3Dihub

Cannabidiol attenuates seizures and EEG abnormalities in Angelman syndrome model mice.

 Image result for J Clin Invest.“Angelman syndrome (AS) is a neurodevelopmental disorder characterized by intellectual disability, lack of speech, ataxia, EEG abnormalities, and epilepsy. Seizures in AS individuals are common, debilitating, and often drug-resistant. Therefore, there is an unmet need for better treatment options.

Cannabidiol (CBD), a major phytocannabinoid constituent of cannabis, has antiseizure activity and behavioral benefits in preclinical and clinical studies for some disorders associated with epilepsy, suggesting that the same could be true for AS.

Here we show that acute CBD (100 mg/kg) attenuated hyperthermia- and acoustically-induced seizures in a mouse model of AS. However, neither acute CBD nor a two-weeklong course of CBD administered immediately after a kindling protocol could halt the pro-epileptogenic plasticity observed in AS model mice.

CBD had a dose-dependent sedative effect, but did not have an impact on motor performance. CBD abrogated the enhanced intracortical local field potential power, including delta and theta rhythms observed in AS model mice, indicating that CBD administration could also help normalize the EEG deficits observed in individuals with AS.

Our results provide critical preclinical evidence supporting CBD treatment of seizures and alleviation of EEG abnormalities in AS, and will thus help guide the rational development of CBD as an AS treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/31503547

https://www.jci.org/articles/view/130419

“CBD Could Help Treat Angelman Syndrome, Says Study”   https://www.analyticalcannabis.com/articles/cbd-could-help-treat-angelman-syndrome-says-study-311798

“Medical marijuana saved the life of 8 year old boy with Angelman Syndrome”   http://www.chicagonow.com/soapbox-momma/2016/05/medical-marijuana-saved-the-life-of-8-year-old-boy-with-angelman-syndrome/

The “entourage effect”: Terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders.

“Mood disorders are the most prevalent mental conditions encountered in psychiatric practice. Numerous patients suffering from mood disorders present with treatment-resistant forms of depression, co-morbid anxiety, other psychiatric disorders and bipolar disorders.

Standardized essential oils (such as that of Lavender officinalis) have been shown to exert clinical efficacy in treating anxiety disorders. As endocannabinoids are suggested to play an important role in major depression, generalized anxiety and bipolar disorders, Cannabis sativa, was suggested for their treatment.

The endocannabinoid system is widely distributed throughout the body including the brain, modulating many functions. It is involved in mood and related disorders, and its activity may be modified by exogenous cannabinoids.

CB1 and CB2 receptors primarily serve as the binding sites for endocannabinoids as well as for phytocannabinoids, produced by cannabis inflorescences. However, ‘cannabis’ is not a single compound product but is known for its complicated molecular profile, producing a plethora of phytocannabinoids alongside a vast array of terpenes.

Thus, the “entourage effect” is the suggested positive contribution derived from the addition of terpenes to cannabinoids. Here we review the literature on the effects of cannabinoids and discuss the possibility of enhancing cannabinoid activity on psychiatric symptoms by the addition of terpenes and terpenoids.

Possible underlying mechanisms for the anti-depressant and anxiolytic effects are reviewed. These natural products may be an important potential source for new medications for the treatment of mood and anxiety disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31481004

http://www.eurekaselect.com/174648/article

Cannabinoids and Mental Health, Part 1: The Endocannabinoid System and Exogenous Cannabinoids.

Image result for j psychosoc nurs ment health serv“The increasing public acceptance of cannabis and the proliferation of cannabis products in the marketplace has coincided with more patients using the drug as a substitute for psychiatric medications or as an adjunctive treatment modality for psychiatric conditions, despite limited evidence of efficacy. With a goal of furthering harm-reduction efforts in psychiatric nursing, the current article reviews the fundamentals of the endocannabinoid system in humans and the exogenous phytocannabinoids that act on this regulatory neurotransmitter system. The basics of cannabis botany are also reviewed to help nurse clinicians understand the heterogeneous nature of cannabis products. This foundational knowledge will help improve clinical interactions with patients who use cannabis and provide the necessary understanding of cannabinoids needed to undertake further scientific query into their purported benefits in psychiatric disease states.”

https://www.ncbi.nlm.nih.gov/pubmed/31461513

Cannabidivarin Treatment Ameliorates Autism-Like Behaviors and Restores Hippocampal Endocannabinoid System and Glia Alterations Induced by Prenatal Valproic Acid Exposure in Rats.

 Image result for frontiers in cellular neuroscience“Autism spectrum disorder (ASD) is a developmental condition whose primary features include social communication and interaction impairments with restricted or repetitive motor movements. No approved treatment for the core symptoms is available and considerable research efforts aim at identifying effective therapeutic strategies.

Emerging evidence suggests that altered endocannabinoid signaling and immune dysfunction might contribute to ASD pathogenesis. In this scenario, phytocannabinoids could hold great pharmacological potential due to their combined capacities to act either directly or indirectly on components of the endocannabinoid system and to modulate immune functions.

Among all plant-cannabinoids, the phytocannabinoid cannabidivarin (CBDV) was recently shown to reduce motor impairments and cognitive deficits in animal models of Rett syndrome, a condition showing some degree of overlap with autism, raising the possibility that CBDV might have therapeutic potential in ASD.

Here, we investigated the ability of CBDV treatment to reverse or prevent ASD-like behaviors in male rats prenatally exposed to valproic acid (VPA; 500 mg/kg i.p.; gestation day 12.5).

CBDV in symptomatic rats recovered social impairments, social novelty preference, short-term memory deficits, repetitive behaviors and hyperlocomotion whereas preventative treatment reduced sociability and social novelty deficits, short-term memory impairments and hyperlocomotion, without affecting stereotypies.

As dysregulations in the endocannabinoid system and neuroinflammatory markers contribute to the development of some ASD phenotypes in the VPA model, neurochemical studies were performed after symptomatic treatment to investigate possible CBDV’s effects on the endocannabinoid system, inflammatory markers and microglia activation in the hippocampus and prefrontal cortex.

Prenatal VPA exposure increased CB1 receptor, FAAH and MAGL levels, enhanced GFAP, CD11b, and TNFα levels and triggered microglia activation restricted to the hippocampus. All these alterations were restored after CBDV treatment.

These data provide preclinical evidence in support of the ability of CBDV to ameliorate behavioral abnormalities resembling core and associated symptoms of ASD. At the neurochemical level, symptomatic CBDV restores hippocampal endocannabinoid signaling and neuroinflammation induced by prenatal VPA exposure.”

https://www.ncbi.nlm.nih.gov/pubmed/31447649

https://www.frontiersin.org/articles/10.3389/fncel.2019.00367/full