Development of An Oral Treatment with the PPAR-γ-Acting Cannabinoid VCE-003.2 Against the Inflammation-Driven Neuronal Deterioration in Experimental Parkinson’s Disease.

molecules-logo “In a recent study, we described the neuroprotective properties of VCE-003.2-an aminoquinone derivative of the non-psychotropic phytocannabinoid cannabigerol (CBG)-administered intraperitoneally (i.p.) in an inflammatory model of Parkinson’s disease (PD). We also demonstrated that these properties derive from its activity on the peroxisome proliferator-activated receptor-γ, in particular at a regulatory site within this receptor type.

In the present study, we wanted to further confirm this neuroprotective potential using an oral lipid formulation of VCE-003.2, developed to facilitate the clinical development of this phytocannabinoid derivative.

To this end, we evaluated VCE-003.2, administered orally at two doses (10 and 20 mg/kg), to mice subjected to unilateral intrastriatal injections of lipopolysaccharide (LPS), a classic model of inflammation-driven neuronal deterioration that recapitulates characteristics of PD.

In summary, our data confirm the neuroprotective potential of an oral formulation of VCE-003.2 against neuronal injury in an in vivo model of PD based on neuroinflammation, and this study opens the possibility to further the development of oral VCE-003.2 in the clinic.”

https://www.ncbi.nlm.nih.gov/pubmed/31349553

https://www.mdpi.com/1420-3049/24/15/2702

Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges

Image result for frontiers in immunology“It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (−)-trans9-tetrahydrocannabinol (THC), (−)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.

Active Components of Cannabis sativa (Hemp)—Phytocannabinoids (pCBs) and Beyond

It is known since ancient times that consumption of different parts of the plant Cannabis sativa can lead to psychotropic effects. Moreover, mostly, but not exclusively because of its potent analgesic actions, it was considered to be beneficial in the management of several diseases. Nowadays it is a common knowledge that these effects were mediated by the complex mixture of biologically active substances produced by the plant. So far, at least 545 active compounds have been identified in it, among which, the best-studied ones are the so-called pCBs. It is also noteworthy that besides these compounds, ca. 140 different terpenes [including the potent and selective CB2 agonist sesquiterpene β-caryophyllene (BCP)], multiple flavonoids, alkanes, sugars, non-cannabinoid phenols, phenylpropanoids, steroids, fatty acids, and various nitrogenous compounds can be found in the plant, individual biological actions of which are mostly still nebulous. Among the so far identified > 100 pCBs, the psychotropic (−)-trans9-tetrahydrocannabinol (THC) and the non-psychotropic (−)-cannabidiol (CBD) are the best-studied ones, exerting a wide-variety of biological actions [including but not exclusively: anticonvulsive, analgesic, antiemetic, and anti inflammatory effects]. Of great importance, pCBs have been shown to modulate the activity of a plethora of cellular targets, extending their impact far beyond the “classical” (see above) cannabinoid signaling. Indeed, besides being agonists [or in some cases even antagonists of CB1 and CB2 cannabinoid receptors, some pCBs were shown to differentially modulate the activity of certain TRP channels, PPARs, serotonin, α adrenergic, adenosine or opioid receptors, and to inhibit COX and lipoxygenase enzymes, FAAH, EMT, etc.. Moreover, from a clinical point-of-view, it should also be noted that pCBs can indirectly modify pharmacokinetics of multiple drugs (e.g., cyclosporine A) by interacting with several cytochrome P 450 (CYP) enzymes. Taken together, pCBs can be considered as multitarget polypharmacons, each of them having unique “molecular fingerprints” created by the characteristic activation/inhibition pattern of its locally available cellular targets.

Concluding Remarks—Lessons to Learn from Cannabis

Research efforts of the past few decades have unambiguously evidenced that ECS is one of the central orchestrators of both innate and adaptive immune systems, and that pure pCBs as well as complex cannabis-derivatives can also deeply influence immune responses. Although, many open questions await to be answered, pharmacological modulation of the (endo)cannabinoid signaling, and restoration of the homeostatic eCB tone of the tissues augur to be very promising future directions in the management of several pathological inflammation-accompanied diseases. Moreover, in depth analysis of the (quite complex) mechanism-of-action of the most promising pCBs is likely to shed light to previously unknown immune regulatory mechanisms and can therefore pave new “high”-ways toward developing completely novel classes of therapeutic agents to manage a wide-variety of diseases.”

https://www.frontiersin.org/articles/10.3389/fimmu.2017.01487/full

www.frontiersin.org

From Cannabinoids and Neurosteroids to Statins and the Ketogenic Diet: New Therapeutic Avenues in Rett Syndrome?

Image result for frontiers in neuroscience “Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene, being one of the leading causes of mental disability in females.

Epilepsy is one of the most common symptoms in RTT, occurring in 60 to 80% of RTT cases, being associated with worsening of other symptoms. At this point, no cure for RTT is available and there is a pressing need for the discovery of new drug candidates to treat its severe symptoms.

New and exciting evidence has been gathered and the etiopathogenesis of this complex, severe and untreatable disease is slowly being unfolded. Advances in gene editing techniques have prompted cure-oriented research in RTT. Nonetheless, at this point, finding a cure is a distant reality, highlighting the importance of further investigating the basic pathological mechanisms of this disease.”

https://www.ncbi.nlm.nih.gov/pubmed/31333401

“Very recently, a new study using CBDV has confirmed the potential of this particular phytocannabinoid in RTT.  The promising antiseizure effects of CBD, even in cases of refractory-epilepsy, observed in both clinical trials with humans and in laboratory animals, the effects of combinations of CBD and Δ9-THC in controlling muscle spasticity and motor symptoms, and the positive results of CBDV administration in two different mouse models of RTT, place cannabinoids as a viable therapeutic strategy in RTT. Moreover, CBD positively modifies impairments in motor, cognitive and social processes in animal models, further highlighting the potential of cannabinoid molecules to tackle RTT-symptomology.”

https://www.frontiersin.org/articles/10.3389/fnins.2019.00680/full

Pharmacology of Medical Cannabis.

 “The Cannabis plant has been used for many of years as a medicinal agent in the relief of pain and seizures. It contains approximately 540 natural compounds including more than 100 that have been identified as phytocannabinoids due to their shared chemical structure. The predominant psychotropic component is Δ9-tetrahydrocannabinol (Δ9-THC), while the major non-psychoactive ingredient is cannabidiol (CBD). These compounds have been shown to be partial agonists or antagonists at the prototypical cannabinoid receptors, CB1 and CB2. The therapeutic actions of Δ9-THC and CBD include an ability to act as analgesics, anti-emetics, anti-inflammatory agents, anti-seizure compounds and as protective agents in neurodegeneration. However, there is a lack of well-controlled, double blind, randomized clinical trials to provide clarity on the efficacy of either Δ9-THC or CBD as therapeutics. Moreover, the safety concerns regarding the unwanted side effects of Δ9-THC as a psychoactive agent preclude its widespread use in the clinic. The legalization of cannabis for medicinal purposes and for recreational use in some regions will allow for much needed research on the pharmacokinetics and pharmocology of medical cannabis. This brief review focuses on the use of cannabis as a medicinal agent in the treatment of pain, epilepsy and neurodegenerative diseases. Despite the paucity of information, attention is paid to the mechanisms by which medical cannabis may act to relieve pain and seizures.”

https://www.ncbi.nlm.nih.gov/pubmed/31332738

https://link.springer.com/chapter/10.1007%2F978-3-030-21737-2_8

Cannabinoid Interactions with Proteins: Insights from Structural Studies.

 “Cannabinoids have been widely used for recreational and medicinal purposes. The increasing legalization of cannabinoid use and the growing success in Medicinal Chemistry of cannabinoids have fueled recent interest in cannabinoid-sensing sites in receptor proteins. Here, we review structural data from high-resolution cryo-EM and crystallography studies that depict phytocannabinoid, endocannabinoid, and synthetic cannabinoid molecules bound to various proteins. The latter include antigen-binding fragment (Fab), cellular retinol binding protein 2 (CRBP2), fatty acid-binding protein 5 (FABP5), peroxisome proliferator-activated receptor γ (PPAR γ), and cannabinoid receptor types 1 and 2 (CB1 and CB2). Cannabinoid-protein complexes reveal the complex design of cannabinoid binding sites that are usually presented by conventional ligand-binding pockets on respective proteins. However, subtle differences in cannabinoid interaction with amino acids within the binding pocket often result in diverse consequences for protein function. The rapid increase in available structural data on cannabinoid-protein interactions will ultimately direct drug design efforts toward rendering highly potent cannabinoid-related pharmacotherapies that are devoid of side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/31332733

https://link.springer.com/chapter/10.1007%2F978-3-030-21737-2_3

Endocannabinoid System Components: Overview and Tissue Distribution.

 “Marijuana/cannabinoid research has been transformed into mainstream science during the last half-century. Evidence based research and remarkable biotechnological advances demonstrate that phytocannabinoids and endocannabinoid (eCBs) acting on cannabinoid receptors (CBRs) regulate various aspects of human physiological, behavioral, immunological and metabolic functions. The distribution and function of the components of the endocannabinoid system (ECS) in the central nervous system (CNS) and immune processes have garnished significant research focus with major milestones. With these advances in biotechnology, rapid extension of the ECS research in the periphery has gained momentum. In this chapter, we review the components and tissue distribution of this previously unknown but ubiquitous and complex ECS that is involved in almost all aspects of mammalian physiology and pathology.”

https://www.ncbi.nlm.nih.gov/pubmed/31332731

https://link.springer.com/chapter/10.1007%2F978-3-030-21737-2_1

The heterogeneity and complexity of Cannabis extracts as antitumor agents

Related image

“The Cannabis plant contains over 100 phytocannabinoids and hundreds of other components. The biological effects and interplay of these Cannabis compounds are not fully understood and yet influence the plant’s therapeutic effects.

Here we assessed the antitumor effects of whole Cannabis extracts, which contained significant amounts of differing phytocannabinoids, on different cancer lines from various tumor origins.

Our results show that specific Cannabis extracts impaired the survival and proliferation of cancer cell lines as well as induced apoptosis.

Our findings showed that pure (-)-Δ9trans-tetrahydrocannabinol (Δ9-THC) did not produce the same effects on these cell lines as the whole Cannabis extracts. Furthermore, Cannabis extracts with similar amounts of Δ9-THC produced significantly different effects on the survival of specific cancer cells.

In addition, we demonstrated that specific Cannabis extracts may selectively and differentially affect cancer cells and differing cancer cell lines from the same organ origin. We also found that cannabimimetic receptors were differentially expressed among various cancer cell lines and suggest that this receptor diversity may contribute to the heterogeneous effects produced by the differing Cannabis extracts on each cell line.

Our overall findings indicate that the effect of a Cannabis extract on a specific cancer cell line relies on the extract’s composition as well as on certain characteristics of the targeted cells.”

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=26983

“Many previous reports highlight and demonstrate the anti-tumor effects of cannabinoids. In the last decade, accumulating evidence has indicated that phytocannabinoids might have antitumor properties. A number of in vitro and in vivo studies have demonstrated the effects of phytocannabinoids on tumor progression by interrupting several characteristic features of cancer. These studies suggest that specific cannabinoids such as Δ9-THC and CBD induce apoptosis and inhibit proliferation in various cancer cell lines.”

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=26983&path%5B%5D=85698

https://pubmed.ncbi.nlm.nih.gov/31289609/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609248/

“Cannabis Found Effective in Fighting Drug-Resistant Bacteria”

1957: “[Hemp (Cannabis sativa); antibiotic drug. I. Hemp in the old & popular medicine].” https://www.ncbi.nlm.nih.gov/pubmed/13484424
1958: “[Hemp (Cannabis sativa)–antibiotic drugs. II. Method & results of bacteriological experiments & preliminary clinical experience].” https://www.ncbi.nlm.nih.gov/pubmed/13553773
1959: “[Hemp (Cannabis sativa)-an antibiotic drug. 3. Isolation and constitution of two acids from Cannabis sativa].” https://www.ncbi.nlm.nih.gov/pubmed/14411912
1962: “Antibiotic activity of various types of cannabis resin.” https://www.ncbi.nlm.nih.gov/pubmed/14489783
2008: “Antibacterial cannabinoids from Cannabis sativa: a structure-activity study.” https://www.ncbi.nlm.nih.gov/pubmed/18681481
“Cannabis plant extracts can effectively fight drug-resistant bacteria.” http://abcnews.go.com/Technology/story?id=5787866
“According to research, the five most common cannabinoid compounds in weed—tetrahydrocannabinol (THC), cannabidiol, cannabigerol, cannabinol and cannabichromene—can kill antibiotic-resistant bacteria.” https://blogs.scientificamerican.com/news-blog/whoa-the-stuff-in-pot-kills-germs-2008-08-27/
“All five cannabinoids (THC, CBD, CBG, CBC, and CBN) were potent against bacteria. Notably, they performed well against bacteria that were known to be multidrug resistant, like the strains of MRSA” http://arstechnica.com/science/2008/08/killing-bacteria-with-cannabis/
2014: “Better than antibiotics, cannabinoids kill antibiotic-resistant MRSA bacteria” http://usahealthresource.blogspot.com/2014/02/marijuana-extracts-and-compounds-kill.html
2019: “Cannabis Found Effective in Fighting Drug-Resistant Bacteria” https://www.courthousenews.com/cannabis-found-effective-in-fighting-drug-resistant-bacteria/
“Cannabis oil kills bacteria better than established antibiotics… providing a possible new weapon in the war on superbugs, according to new research. It offers hope of curing killer infections – including MRSA and pneumonia, say scientists.” https://www.thelondoneconomic.com/lifestyle/cannabis-oil-kills-bacteria-better-than-established-antibiotics/24/06/ 
“CANNABIS COMPOUND COULD BE LATEST WEAPON IN WAR AGAINST SUPERBUGS”
“Marijuana skin cream kills superbugs, says Botanix” https://stockhead.com.au/health/marijuana-skin-cream-kills-superbugs-says-botanix/
“Botanix’s CBD-based product destroys superbug skin infections in another ‘world first’” https://smallcaps.com.au/botanix-cbd-based-product-destroys-skin-superbug-infections/
“Compound in cannabis found to be ‘promising’ new antibiotic that does not lose its effectiveness with use” https://www.kelownanow.com/watercooler/news/news/Cannabis/Compound_in_cannabis_found_to_be_promising_new_antibiotic_that_does_not_lose_its_effectiveness_with_use/
Image may contain: plant and text

Molecular docking analysis of phyto-constituents from Cannabis sativa with pfDHFR.

Image result for Bioinformation journal

“Available antimalarial drugs have been associated with numerous side effects, which include skin rashes and myelo-suppression. Therefore, it is of interest to explore compounds from natural source having drug-like properties without side effect.

This study focuses on the screening of compounds from Cannabis sativa against malaria Plasmodium falciparum dihydrofolate reductase for antimalarial properties using Glide (Schrodinger maestro 2018-1).

The result showed that phytochemicals from Cannabis sativa binds with a higher affinity and lower free energy than the standard ligand with isovitexin and vitexin having a glide score of -11.485 and -10.601 respectively, sophoroside has a glide score of -9.711 which is lower than the cycloguanil (co-crystallized ligand) having a glide score of -6.908.

This result gives new perception to the use of Cannabis sativa as antimicrobial agent.”

https://www.ncbi.nlm.nih.gov/pubmed/31223216

http://www.bioinformation.net/014/97320630014574.htm

Antitumor Cannabinoid Chemotypes: Structural Insights.

Image result for frontiers in pharmacology“Cannabis has long been known to limit or prevent nausea and vomiting, lack of appetite, and pain. For this reason, cannabinoids have been successfully used in the treatment of some of the unwanted side effects caused by cancer chemotherapy.

Besides their palliative effects, research from the past two decades has demonstrated their promising potential as antitumor agents in a wide variety of tumors.

Cannabinoids of endogenous, phytogenic, and synthetic nature have been shown to impact the proliferation of cancer through the modulation of different proteins involved in the endocannabinoid system such as the G protein-coupled receptors CB1, CB2, and GRP55, the ionotropic receptor TRPV1, or the fatty acid amide hydrolase (FAAH).

In this article, we aim to structurally classify the antitumor cannabinoid chemotypes described so far according to their targets and types of cancer. In a drug discovery approach, their in silico pharmacokinetic profile has been evaluated in order to identify appropriate drug-like profiles, which should be taken into account for further progress toward the clinic.

This analysis may provide structural insights into the selection of specific cannabinoid scaffolds for the development of antitumor drugs for the treatment of particular types of cancer.” https://www.ncbi.nlm.nih.gov/pubmed/31214034

“The first report on the antitumor activity of phytocannabinoids was published over four decades ago. During these last years, significant research has been focused on the therapeutic potential of cannabinoids to manage palliative effects in cancer patients. Besides such palliative applications, some cannabinoids have shown anticancer properties. Since inflammation is a common risk factor for cancer, and some cannabinoids have shown anti-inflammatory properties, they could play a role in chemoprevention.” https://www.frontiersin.org/articles/10.3389/fphar.2019.00621/full
“Antitumor effects of THC.” http://www.ncbi.nlm.nih.gov/pubmed/11097557
“Antitumor effects of cannabidiol” http://www.ncbi.nlm.nih.gov/pubmed/14617682
“Anti-tumour actions of cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/30019449
“Extensive preclinical research has demonstrated that cannabinoids, the active ingredients of Cannabis sativa, trigger antitumor responses in different models of cancer.” https://www.ncbi.nlm.nih.gov/pubmed/29940172