Effect of cannabidiol on endocannabinoid, glutamatergic and GABAergic signalling markers in male offspring of a maternal immune activation (poly I:C) model relevant to schizophrenia.

Progress in Neuro-Psychopharmacology and Biological Psychiatry

“The mainstay treatment for schizophrenia is antipsychotic drugs (APDs), which are mostly effective against the positive symptoms (e.g. hallucinations), but provide minimal benefits for the negative symptoms (e.g. social withdrawal) and cognitive deficits.

We have recently shown that treatment with the non-intoxicating phytocannabinoid, cannabidiol (CBD), can improve cognition and social interaction deficits in a maternal immune activation (MIA) model relevant to the aetiology of schizophrenia, however, the mechanisms underlying this effect are unknown.

An imbalance in the main excitatory (glutamate) and inhibitory (GABA) neurotransmitter systems in the brain plays a role in the pathophysiology of schizophrenia. Therefore, the endocannabinoid system could represent a therapeutic target for schizophrenia as a regulator of glutamate and GABA release via the CB1 receptor (CB1R).

Overall, these findings show that CBD can restore cannabinoid/GABAergic signalling deficits in regions of the brain implicated in schizophrenia pathophysiology following maternal poly I:C exposure. These findings provide novel evidence for the potential mechanisms underlying the therapeutic effects of CBD treatment in the poly I:C model.”

https://www.ncbi.nlm.nih.gov/pubmed/31202911

https://www.sciencedirect.com/science/article/pii/S027858461930106X?via%3Dihub

The Endocannabinoid System and its Modulation by Cannabidiol (CBD).

Image result for Altern Ther Health Med. “The endocannabinoid system (ECS) is an extensive endogenous signaling system with multiple elements, the number of which may be increasing as scientists continue to elucidate its role in human health and disease. The ECS is seemingly ubiquitous in animal species and is modulated by diet, sleep, exercise, stress, and a multitude of other factors, including exposure to phytocannabinoids, like Cannabidiol (CBD). Modulating the activity of this system may offer tremendous therapeutic promise for a diverse scope of diseases, ranging from mental health disorders, neurological and movement disorders, pain, autoimmune disease, spinal cord injury, cancer, cardiometabolic disease, stroke, TBI, osteoporosis, and others.”

https://www.ncbi.nlm.nih.gov/pubmed/31202198

Bipolar disorder and the endocannabinoid system.

 Image result for acta neuropsychiatrica“Bipolar disorder (BD) is a debilitating, lifelong neuropsychiatric illness characterised by unsteady mood states which vacillate from (hypo)mania to depression. Despite the availability of pharmaceutical agents which can be effective in ameliorating the acute affective symptoms and prevent episodic relapse, BD is inadequately treated in a subset of patients.

The endocannabinoid system (ECS) is known to exert neuromodulatory effects on other neurotransmitter systems critical in governing emotions. Several studies ranging from clinical to molecular, as well as anecdotal evidence, have placed a spotlight on the potential role of the ECS in the pathophysiology of BD. In this perspective, we present advantages and disadvantages of cannabis use in the management of illness course of BD and provide mechanistic insights into how this system might contribute to the pathophysiology of BD.

RESULTS:

We highlight the putative role of selective cannabinoid receptor 2 (CB2) agonists in BD and briefly discuss findings which provide a rationale for targeting the ECS to assuage the symptoms of BD. Further, data encourage basic and clinical studies to determine how cannabis and cannabinoids (CBs) can affect mood and to investigate emerging CB-based options as probable treatment approaches.

CONCLUSION:

The probable role of the ECS has been almost neglected in BD; however, from data available which suggest a role of ECS in mood control, it is justified to support conducting comprehensive studies to determine whether ECS manipulation could positively affect BD. Based on the limited available data, we suggest that activation of CB2 may stabilise mood in this disorder.”

https://www.ncbi.nlm.nih.gov/pubmed/31159897

https://www.cambridge.org/core/journals/acta-neuropsychiatrica/article/bipolar-disorder-and-the-endocannabinoid-system/0C3191AF7BECA6D5A6EBED3C94CAA57B

Should Oncologists Recommend Cannabis?

“Cannabis is a useful botanical with a wide range of therapeutic potential. Global prohibition over the past century has impeded the ability to study the plant as medicine. However, delta-9-tetrahydrocannabinol (THC) has been developed as a stand-alone pharmaceutical initially approved for the treatment of chemotherapy-related nausea and vomiting in 1986. The indication was expanded in 1992 to include treatment of anorexia in patients with the AIDS wasting syndrome. Hence, if the dominant cannabinoid is available as a schedule III prescription medication, it would seem logical that the parent botanical would likely have similar therapeutic benefits. The system of cannabinoid receptors and endogenous cannabinoids (endocannabinoids) has likely developed to help us modulate our response to noxious stimuli. Phytocannabinoids also complex with these receptors, and the analgesic effects of cannabis are perhaps the best supported by clinical evidence. Cannabis and its constituents have also been reported to be useful in assisting with sleep, mood, and anxiety. Despite significant in vitro and animal model evidence supporting the anti-cancer activity of individual cannabinoids-particularly THC and cannabidiol (CBD)-clinical evidence is absent. A single intervention that can assist with nausea, appetite, pain, mood, and sleep is certainly a valuable addition to the palliative care armamentarium. Although many healthcare providers advise against the inhalation of a botanical as a twenty-first century drug-delivery system, evidence for serious harmful effects of cannabis inhalation is scant and a variety of other methods of ingestion are currently available from dispensaries in locales where patients have access to medicinal cannabis. Oncologists and palliative care providers should recommend this botanical remedy to their patients to gain first-hand evidence of its therapeutic potential despite the paucity of results from randomized placebo-controlled clinical trials to appreciate that it is both safe and effective and really does not require a package insert.”

https://www.ncbi.nlm.nih.gov/pubmed/31161270

https://link.springer.com/article/10.1007%2Fs11864-019-0659-9

Prolonged Cannabidiol Treatment Lacks on Detrimental Effects on Memory, Motor Performance and Anxiety in C57BL/6J Mice.

Image result for frontier in behavioral neuroscience“The Cannabis plant contains more than 100 currently known phytocannabinoids. Regarding the rising consumption of the non-psychotropic phytocannabinoid cannabidiol (CBD) in people’s everyday life (e.g., beauty products, food and beverages), the importance of studies on the influence of CBD on healthy humans and rodents is evident. Therefore, the behavioral profile of CBD was investigated with a battery of behavioral tests, including motor, anxiety, and memory tests after prolonged CBD treatment. Adult C57Bl/6J wildtype (WT) mice were daily intraperitoneally injected with 20 mg/kg CBD for 6 weeks starting at two different points of ages (3 months and 5 months) to compare the influence of prolonged CBD treatment with a washout period (former group) to the effects of long term CBD treatment (current group). Our results show that CBD treatment does not influence motor performance on an accelerating Rotarod test, while it also results in a lower locomotor activity in the open field (OF). No influence of CBD on spatial learning and long term memory in the Morris Water Maze (MWM) was observed. Memory in the Novel Object Recognition test (NORT) was unaffected by CBD treatment. Two different anxiety tests revealed that CBD does not affect anxiety behavior in the Dark-Light Box (DLB) and OF test. Although, anxiety is altered by current CBD treatment in the Elevated Plus Maze (EPM). Moreover, CBD-treated C57Bl/6J mice showed an unaltered acoustic startle response (ASR) compared to vehicle-treated mice. However, current CBD treatment impairs prepulse inhibition (PPI), a test to analyze sensorimotor gating. Furthermore, prolonged CBD treatment did not affect the hippocampal neuron number. Our results demonstrate that prolonged CBD treatment has no negative effect on the behavior of adult C57Bl/6J mice.”

https://www.ncbi.nlm.nih.gov/pubmed/31133833

https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00094/full

The New Runner’s High? Examining Relationships Between Cannabis Use and Exercise Behavior in States With Legalized Cannabis.

Image result for frontiers in public health

“Scientific literature examining cannabis use in the context of health behaviors, such as exercise engagement, is extremely sparse and has yielded inconsistent findings. This issue is becoming increasingly relevant as cannabis legalization continues, a situation that has been associated with increased initiation of use among adults, and increased potency of available products in legalized states.

Physical activity is among the most important health behaviors, but many Americans do not meet minimum exercise recommendations for healthy living. Common issues surrounding low exercise rates include inadequate enjoyment of and motivation to exercise, and poor recovery from exercise.

It is unclear whether cannabis use shortly before and/or after exercise impacts these issues, and whether this co-use affects exercise performance. The present online survey study examines attitudes and behaviors regarding cannabis use with exercise among adult cannabis users living in states with full legal access (N = 605).

Results indicated that the majority (81.7%) of participants endorsed using cannabis concurrently with exercise, and those who did tended to be younger and more likely to be males (p < 0.0005 for both). Even after controlling for these differences, co-users reported engaging in more minutes of aerobic and anaerobic exercise per week (p < 0.01 and p < 0.05, respectively). In addition, the majority of participants who endorsed using cannabis shortly before/after exercise reported that doing so enhances their enjoyment of and recovery from exercise, and approximately half reported that it increases their motivation to exercise.

This study represents an important step in clarifying cannabis use with exercise among adult users in states with legal cannabis markets, and provides guidance for future research directions.”

“A runner’s high depends on cannabinoid receptors in mice.”   http://www.ncbi.nlm.nih.gov/pubmed/26438875

“Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the ‘runner’s high’”  http://jeb.biologists.org/content/215/8/1331.long

The use of cannabinoids for sleep: A critical review on clinical trials.

APA's header logo

“Cannabis and its pharmacologically active constituents, phytocannabinoids, have long been reported to have multiple medicinal benefits.

One association often reported by users is sedation and subjective improvements in sleep.

Many of the reviewed studies suggested that cannabinoids could improve sleep quality, decrease sleep disturbances, and decrease sleep onset latency.”

https://www.ncbi.nlm.nih.gov/pubmed/31120284

https://psycnet.apa.org/doiLanding?doi=10.1037/pha0000285

Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial

Image result for american journal of psychiatry“Despite the staggering consequences of the opioid epidemic, limited nonopioid medication options have been developed to treat this medical and public health crisis.

This study investigated the potential of cannabidiol (CBD), a nonintoxicating phytocannabinoid, to reduce cue-induced craving and anxiety, two critical features of addiction that often contribute to relapse and continued drug use, in drug-abstinent individuals with heroin use disorder.

Acute CBD administration, in contrast to placebo, significantly reduced both craving and anxiety induced by the presentation of salient drug cues compared with neutral cues. CBD also showed significant protracted effects on these measures 7 days after the final short-term (3-day) CBD exposure. In addition, CBD reduced the drug cue–induced physiological measures of heart rate and salivary cortisol levels. There were no significant effects on cognition, and there were no serious adverse effects.

 Conclusions:

CBD’s potential to reduce cue-induced craving and anxiety provides a strong basis for further investigation of this phytocannabinoid as a treatment option for opioid use disorder.”

https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2019.18101191

“Study finds CBD effective in treating heroin addiction”  https://www.cnn.com/2019/05/21/health/heroin-opioid-addiction-cbd-study/index.html

“CBD oil may help limit cravings and anxiety in heroin users, study finds”  https://www.nbcnews.com/health/health-news/cbd-oil-may-help-limit-cravings-anxiety-heroin-users-study-n1007856

“Cannabis Compound Eases Anxiety and Cravings of Heroin Addiction”  https://www.scientificamerican.com/article/cannabis-compound-eases-anxiety-and-cravings-of-heroin-addiction/?redirect=1

Effect of cannabidiol on muscarinic neurotransmission in the pre-frontal cortex and hippocampus of the poly I:C rat model of schizophrenia.

Progress in Neuro-Psychopharmacology and Biological Psychiatry

“Cognitive impairment is a core symptom of schizophrenia; however, current antipsychotic drugs have limited efficacy to treat these symptoms and can cause serious side-effects, highlighting a need for novel therapeutics.

Cannabidiol (CBD) is a non-intoxicating phytocannabinoid that has demonstrated pro-cognitive effects in multiple disease states, including a maternal immune activation (poly I:C) model of schizophrenia, but the mechanisms underlying the efficacy of CBD require investigation.

We examined alterations in markers of muscarinic neurotransmission in the pre-frontal cortex (PFC) and hippocampus (HPC) following CBD treatment.

These findings demonstrate that CBD can normalise muscarinic neurotransmission imbalances in male poly I:C offspring in regions of the brain implicated in cognition.”

https://www.ncbi.nlm.nih.gov/pubmed/31108177

https://www.sciencedirect.com/science/article/pii/S0278584618308121?via%3Dihub

Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer’s Disease.

“Finding a therapy for Alzheimer’s disease (AD) is perhaps the greatest challenge for modern medicine. The chemical scaffolds of many drugs in the clinic today are based upon natural products from plants, yet Cannabis has not been extensively examined as a source of potential AD drug candidates.

Here, we determine if a number of non-psychoactive cannabinoids are neuroprotective in a novel pre-clinical AD and neurodegeneration drug-screening platform that is based upon toxicities associated with the aging brain.

This drug discovery paradigm has yielded several compounds in or approaching clinical trials for AD. Eleven cannabinoids were assayed for neuroprotection in assays that recapitulate proteotoxicity, loss of trophic support, oxidative stress, energy loss, and inflammation. These compounds were also assayed for their ability to remove intraneuronal amyloid and subjected to a structure-activity relationship analysis. Pairwise combinations were assayed for their ability to synergize to produce neuroprotective effects that were greater than additive.

Nine of the 11 cannabinoids have the ability to protect cells in four distinct phenotypic neurodegeneration screening assays, including those using neurons that lack CB1 and CB2 receptors. They are able to remove intraneuronal Aβ, reduce oxidative damage, and protect from the loss of energy or trophic support. Structure-activity relationship (SAR) data show that functional antioxidant groups such as aromatic hydroxyls are necessary but not sufficient for neuroprotection. Therefore, there is a need to focus upon CB1 agonists that have these functionalities if neuroprotection is the goal.

Pairwise combinations of THC and CBN lead to a synergistic neuroprotective interaction.

Together, these results significantly extend the published data by showing that non-psychoactive cannabinoids are potential lead drug candidates for AD and other neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/31104297

https://link.springer.com/article/10.1007%2Fs12035-019-1637-8