Betacaryophyllene – A phytocannabinoid as potential therapeutic modality for human sepsis?

Medical Hypotheses Home

“Sepsis is a clinical condition resulting from a dysregulated immune response to an infection that leads to organ dysfunction. Despite numerous efforts to optimize treatment, sepsis remains to be the main cause of death in most intensive care units.

The endogenous cannabinoid system (ECS) plays an important role in inflammation.

Cannabinoid receptor 2 (CB2R) activation is immunosuppressive, which might be beneficial during the hyper-inflammatory phase of sepsis.

Beta-caryophyllene (BCP) is a non-psychoactive natural cannabinoid (phytocannabinoid) found in Cannabis sativa and in essential oils of spices and food plants, that acts as a selective agonist of CB2R.

We propose BCP administration as novel treatment to reduce hyper-inflammation in human sepsis.”

Randomised Controlled Trial (RCT) of cannabinoid replacement therapy (Nabiximols) for the management of treatment-resistant cannabis dependent patients: a study protocol.

Image result for bmc psychiatry

“The cannabis extract nabiximols (Sativex®) effectively supresses withdrawal symptoms and cravings in treatment resistant cannabis dependent individuals, who have high relapse rates following conventional withdrawal treatments.

This study examines the efficacy, safety and cost-effectiveness of longer-term nabiximols treatment for outpatient cannabis dependent patients who have not responded to previous conventional treatment approaches.

This is the first outpatient community-based randomised controlled study of nabiximols as an agonist replacement medication for treating cannabis dependence, targeting individuals who have not previously responded to conventional treatment approaches. The study and treatment design is modelled upon an earlier study with this population and more generally on other agonist replacement treatments (e.g. nicotine, opioids).”

https://www.ncbi.nlm.nih.gov/pubmed/29776349

“There is a need for more effective treatment approaches for cannabis dependent patients who are unable to discontinue their illicit use through psychosocial interventions alone. Longer-term agonist replacement treatment approaches rather than acute withdrawal management are likely to be more effective, with the combination of THC:CBD nabiximols preparation being potentially advantageous over synthetic THC analogues. This is the first large-scale outpatient RCT of nabiximols for this population, and has required the development of clinical and research methods specific to agonist treatment with a plant-derived cannabinoid formulation, building upon clinical research models previously used in opioid agonist treatment approaches.”

https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-018-1682-2

Endocannabinoid system and anticancer properties of cannabinoids

Folia Biologica et Oecologica

“Cannabinoids impact human body by binding to cannabinoids receptors (CB1 and CB2).

The two main phytocannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

THC interacts with CB1 receptors occurring in central nervous system and is responsible for psychoactive properties of marijuana. CBD has low affinity to CB1 receptor, has no psychoactive characteristics and its medical applications can be wider.

CB receptors are part of a complex machinery involved in regulation of many physiological processes – endocannabinoid system.

Cannabinoids have found some applications in palliative medicine, but there are many reports concerning their anticancer affects.

Agonists of CB1 receptors stimulate accumulation of ceramides in cancer cells, stress of endoplasmic reticulum (ER stress) and, in turn, apoptosis. Effects of cannabinoids showing low affinity to CB receptors is mediated probably by induction of reactive oxygen species production.

Knowledge of antitumor activity of cannabinoids is still based only on preclinical studies and there is a necessity to conduct more experiments to assess the real potential of these compounds.”

https://content.sciendo.com/view/journals/fobio/12/1/article-p11.xml

The non-psychoactive phytocannabinoid cannabidiol (CBD) attenuates pro-inflammatory mediators, T cell infiltration, and thermal sensitivity following spinal cord injury in mice.

Cellular Immunology

“We evaluated the effects of the non-psychoactive cannabinoid cannabidiol (CBD) on the inflammatory response and recovery of function following spinal cord injury (SCI).

Female C57Bl/6 mice were exposed to spinal cord contusion injury (T9-10) and received vehicle or CBD (1.5 mg/kg IP) injections for 10 weeks following injury. The effect of SCI and CBD treatment on inflammation was assessed via microarray, qRT-PCR and flow cytometry. Locomotor and bladder function and changes in thermal and mechanical hind paw sensitivity were also evaluated.

There was a significant decrease in pro-inflammatory cytokines and chemokines associated with T-cell differentiation and invasion in the SCI-CBD group as well as a decrease in T cell invasion into the injured cord. A higher percentage of SCI mice in the vehicle-treated group (SCI-VEH) went on to develop moderate to severe (0-65.9% baseline thermal threshold) thermal sensitivity as compared with CBD-treated (SCI-CBD) mice. CBD did not affect recovery of locomotor or bladder function following SCI.

Taken together, CBD treatment attenuated the development of thermal sensitivity following spinal cord injury and this effect may be related to protection against pathological T-cell invasion.”

https://www.ncbi.nlm.nih.gov/pubmed/29784129

Review of the neurological benefits of phytocannabinoids.

Logo of sni

“Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS.

METHODS:

In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts.

RESULTS:

Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids.

CONCLUSIONS:

In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.”

https://www.ncbi.nlm.nih.gov/pubmed/29770251

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938896/

Δ9-Tetrahydrocannabinol induces endocannabinoid accumulation in mouse hepatocytes: antagonism by Fabp1 gene ablation.

The Journal of Lipid Research “Phytocannabinoids, such as Δ9tetrahydrocannabinol (THC), bind and activate cannabinoid (CB) receptors, thereby “piggy-backing” on the same pathway’s endogenous endocannabinoids (ECs).

The recent discovery that liver fatty acid binding protein-1 (FABP1) is the major cytosolic “chaperone” protein with high affinity for both Δ9-THC and ECs suggests that Δ9-THC may alter hepatic EC levels.

Therefore, the impact of Δ9-THC or EC treatment on the levels of endogenous ECs, such as N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), was examined in cultured primary mouse hepatocytes from WT and Fabp1 gene-ablated (LKO) mice. Δ9-THC alone or 2-AG alone significantly increased AEA and especially 2-AG levels in WT hepatocytes. LKO alone markedly increased AEA and 2-AG levels. However, LKO blocked/diminished the ability of Δ9-THC to further increase both AEA and 2-AG. In contrast, LKO potentiated the ability of exogenous 2-AG to increase the hepatocyte level of AEA and 2-AG.

These and other data suggest that Δ9-THC increases hepatocyte EC levels, at least in part, by upregulating endogenous AEA and 2-AG levels.

This may arise from Δ9-THC competing with AEA and 2-AG binding to FABP1, thereby decreasing targeting of bound AEA and 2-AG to the degradative enzymes, fatty acid amide hydrolase and monoacylglyceride lipase, to decrease hydrolysis within hepatocytes.”

https://www.ncbi.nlm.nih.gov/pubmed/29414765

http://www.jlr.org/content/59/4/646

Cannabis, from Plant to Pill.

British Journal of Clinical Pharmacology banner

“The therapeutic application of Cannabis is attracting substantial public and clinical interest. The Cannabis plant has been described as a veritable ‘treasure trove’, producing more than a hundred different cannabinoids, although the focus to date has been on the psychoactive molecule delta-9-tetraydrocannabinol (THC) and cannabidiol (CBD).

Other numerous secondary metabolites of Cannabis the terpenes, some of which share the common intermediary geranyl diphosphate (GPP) with the cannabinoids, are hypothesised to contribute synergistically to their therapeutic benefits, an attribute that has been described as the ‘entourage effect’.

The effective delivery of such a complex multicomponent pharmaceutical relies upon the stable genetic background and standardised growth of the plant material, particularly if the raw botanical product in the form of the dried pistillate inflorescence (flos) is the source.

Following supercritical CO2 extraction of the inflorescence (and possibly bracts), the secondary metabolites can be blended to provide a specific ratio of major cannabinoids (THC:CBD) or individual cannabinoids can be isolated, purified and supplied as the pharmaceutical. Intensive breeding strategies will provide novel cultivars of Cannabis possessing elevated levels of specific cannabinoids or other secondary metabolites.”

https://www.ncbi.nlm.nih.gov/pubmed/29701252

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bcp.13618

Therapeutic cannabinoids in multiple sclerosis: immunomodulation revisited.

Publication cover image

Cannabinoids are compounds with pleiotropic properties that act on the cannabinoid receptors, CB1 and CB2, and are divided into endocannabinoids, the endogenous ligands of these receptors, synthetic cannabinoids and phytocannabinoids.

The latter are derived from the plant Cannabis sativa. The therapeutic and psychoactive properties of this plant have been observed and used for centuries.

Of the over 60 compounds that are unique to Cannabis sativa, the substances that have been attributed the greatest therapeutic potential are Δ9 – tetrahydrocannabinol (THC) and cannabidiol (CBD), both of which, used alone or combined with each other, have become approved drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/29633480

https://onlinelibrary.wiley.com/doi/abs/10.1111/ene.13658

Anti-inflammatory properties of cannabidiol, a non-psychotropic cannabinoid, in experimental allergic contact dermatitis.

Journal of Pharmacology and Experimental Therapeutics

“Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation.

Cannabinoid type-2 (CB2) receptor activation was shown to reduce the production of the monocyte chemotactic protein-2 (MCP-2) chemokine in polyinosinic-polycytidylic acid [poly-(I:C)]-stimulated human keratinocyte (HaCaT) cells, an in vitro model of allergic contact dermatitis (ACD).

We investigated if non-psychotropic cannabinoids like cannabidiol (CBD) produced similar effects in this experimental model of ACD.

This is the first demonstration of the anti-inflammatory properties of CBD in an experimental model of ACD.”

Cannabidiol to Improve Mobility in People with Multiple Sclerosis

Image result for frontiers in neurology

“Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that affects an estimated 2.3 million people worldwide. The symptoms of MS are highly varied but frequently include pain, muscle spasticity, fatigue, inflammation, and depression. These symptoms often lead to reduced physical activity, negatively impact functional mobility, and have a detrimental impact on patients’ quality of life.

Although recent years have seen significant advances in disease modifying therapy, none of the current treatments halts or cures MS related symptoms. As a consequence, many people with MS (PwMS) look for alternative and complementary therapies such as cannabis.

The cannabis plant contains many biologically active chemicals, including ~60 cannabinoids. Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) are typically the most concentrated chemical components of cannabis and believed to primarily drive therapeutic benefit.

There is evidence that CBD has a number of beneficial pharmacological effects. It is anti-inflammatory, antioxidative, antiemetic, antipsychotic, and neuroprotective. The review of 132 original studies by Bergamaschi et al. describes the safety profile of CBD by highlighting that catalepsy is not induced and physiological parameters (heart rate, blood pressure, and body temperature) are not altered. Moreover, psychomotor and psychological functions are not negatively affected. High doses of up to 1,500 mg per day and chronic use have been repeatedly shown to be well tolerated by humans.

Additionally, there is also evidence that CBD may reduce the negative psychotropic effects, memory impairment, and appetite stimulation, anxiety and psychotic-like states of THC while enhancing its positive therapeutic actions.

 Anecdotal reports indicate that an increasing number of PwMS use cannabis (medical marijuana) as a supplement to improve their mobility.

Based on the following considerations, it is our opinion that CBD supplementation maybe advisable for PwMS to reduce fatigue, pain, spasticity, and ultimately improve mobility. “

https://www.frontiersin.org/articles/10.3389/fneur.2018.00183/full