“Growing clinical and preclinical evidence suggests a potential role for the phytocannabinoid cannabidiol (CBD) as a pharmacotherapy for various neuropsychiatric disorders. In contrast, delta-9-tetrahydrocannabinol (THC), the primary psychoactive component in cannabis, is associated with acute and neurodevelopmental propsychotic side effects through its interaction with central cannabinoidtype 1 receptors (CB1Rs). CB1R stimulation in the ventral hippocampus (VHipp) potentiates affective memory formation through inputs to the mesolimbic dopamine (DA) system, thereby altering emotional salience attribution. These changes in DA activity and salience attribution, evoked by dysfunctional VHipp regulatory actions and THC exposure, could predispose susceptible individuals to psychotic symptoms. Although THC can accelerate the onset of schizophrenia, CBD displays antipsychotic properties, can prevent the acquisition of emotionally irrelevant memories, and reverses amphetamine-induced neuronal sensitization through selective phosphorylation of the mechanistic target of rapamycin (mTOR) molecular signaling pathway. This review summarizes clinical and preclinical evidence demonstrating that distinct phytocannabinoids act within the VHipp and associated corticolimbic structures to modulate emotional memory processing through changes in mesolimbic DA activity states, salience attribution, and signal transduction pathways associated with schizophrenia-related pathology.”
Tag Archives: phytocannabinoids
Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease.
“Alzheimer’s disease (AD) is a neurodegenerative disease, in which the primary etiology remains unknown. AD presents amyloid beta (Aβ) protein aggregation and neurofibrillary plaque deposits. AD shows oxidative stress and chronic inflammation.
In AD, canonical Wingless-Int (Wnt)/β-catenin pathway is downregulated, whereas peroxisome proliferator-activated receptor γ (PPARγ) is increased. Downregulation of Wnt/β-catenin, through activation of glycogen synthase kinase-3β (GSK-3β) by Aβ, and inactivation of phosphatidylinositol 3-kinase/Akt signaling involve oxidative stress in AD.
Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid from Cannabis sativa plant. In PC12 cells, Aβ-induced tau protein hyperphosphorylation is inhibited by CBD. This inhibition is associated with a downregulation of p-GSK-3β, an inhibitor of Wnt pathway. CBD may also increase Wnt/β-catenin by stimulation of PPARγ, inhibition of Aβ and ubiquitination of amyloid precursor protein.
CBD attenuates oxidative stress and diminishes mitochondrial dysfunction and reactive oxygen species generation. CBD suppresses, through activation of PPARγ, pro-inflammatory signaling and may be a potential new candidate for AD therapy.”
Is cannabis an effective treatment for joint pain?
“Cannabis has been used to treat pain for thousands of years.
However, since the early part of the 20th century, laws restricting cannabis use have limited its evaluation using modern scientific criteria. Over the last decade, the situation has started to change because of the increased availability of cannabis in the United States for either medical or recreational purposes, making it important to provide the public with accurate information as to the effectiveness of the drug for joint pain among other indications.
The major psychotropic component of cannabis is Δ9-tetrahydrocannabinol (THC), one of some 120 naturally occurring phytocannabinoids. Cannabidiol (CBD) is another molecule found in herbal cannabis in large amounts. Although CBD does not produce psychotropic effects, it has been shown to produce a variety of pharmacological effects. Hence, the overall effects of herbal cannabis represent the collective activity of THC, CBD and a number of minor components.
The action of THC is mediated by two major G-protein coupled receptors, cannabinoid receptor type 1 (CB1) and CB2, and recent work has suggested that other targets may also exist. Arachidonic acid derived endocannabinoids are the normal physiological activators of the two cannabinoid receptors.
Natural phytocannabinoids and synthetic derivatives have produced clear activity in a variety of models of joint pain in animals. These effects are the result of both inhibition of pain pathway signalling (mostly CB1) and anti-inflammatory effects (mostly CB2). There are also numerous anecdotal reports of the effectiveness of smoking cannabis for joint pain.
Indeed, it is the largest medical request for the use of the drug. However, these reports generally do not extend to regulated clinical trials for rheumatic diseases. Nevertheless, the preclinical and human data that do exist indicate that the use of cannabis should be taken seriously as a potential treatment of joint pain.”
Efficacy and Tolerability of Phytomedicines in Multiple Sclerosis Patients: A Review.
“Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disorder of the central nervous system (CNS) that can cause cognition, mobility, and sensory impairments. It is considered one of the most common non-traumatic causes of disability in the world.
The aim of the present article was to review the clinical evidence related to medicinal plants in the management of MS symptoms.
Electronic databases, including the Cochrane Library, Pubmed, and Scopus, were searched for entries from 1966 to February 2017. Only clinical studies were included in this review. Different medicinal plants have positive effects on MS, including Andrographis paniculata, Boswellia papyrifera, Ruta graveolens, Vaccinium spp., Camellia sinensis, Panax ginseng, Aloysia citrodora, Ginkgo biloba, Oenothera biennis, and Cannabis sativa.
C. sativa had the highest level of clinical evidence, supporting its efficacy in MS symptoms.
Proanthocyanidins, ginkgo flavone glycosides, ginsenosides, epigallocatechin-3-gallate, cannabinoids (including delta-9-tetrahydrocannabinol and cannabidiol), boswellic acid, and andrographolide were presented as the main bioactive components of medicinal plants with therapeutic benefits in MS.
The main complications of MS in which natural drugs were effective include spasticity, fatigue, scotoma, incontinence, urinary urgency, nocturia, memory performance, functional performance, and tremor. Herbal medicines were mostly well tolerated, and the adverse effects were limited to mild to moderate. Further well-designed human studies with a large sample size and longer follow-up period are recommended to confirm the role of medicinal plants and their metabolites in the management of MS.”
Targeting the Endocannabinoid System to Treat Sepsis
“Sepsis is a complex immune disorder that can affect the function of almost all organ systems in the body. This disorder is characterised by a malfunctioning immune response to an infection that involves both pro-inflammatory and immunosuppressive mediators. This leads to severe damage and failure of vital organs, resulting in patient death. Sepsis, septic shock, and systemic inflammatory response syndrome are the leading causes of mortality in surgical intensive care unit patients internationally.
The current lack of viable therapeutic treatment options for sepsis underscores our insufficient understanding of this complex disease. The endocannabinoid system, a key regulator of essential physiological functions including the immune system, has recently emerged as a potential therapeutic target for sepsis treatment. The endocannabinoid system acquires its name from the plant Cannabis Sativa, which has been used medically to treat a variety of ailments, as well as recreationally for centuries. Cannabis Sativa contains more than 60 active phytocannabinoids with the primary phytocannabinoid Δ9-tetrahydrocannabinol (THC), (6) activating both endogenous endocannabinoid receptors.
The endocannabinoid system represents a potential therapeutic target in sepsis due to the presence of cannabinoid receptors (CB2) on immune cells. In this review we discuss how various targets within the endocannabinoid system can be manipulated to treat the immune consequences of sepsis. One of the targets outlined are the endocannabinoid receptors and modulation of their activity through pharmacological agonists and antagonists. Another therapeutic target covered in this review is the modulation of the endocannabinoid degradative enzyme’s activity. Modulation of degradative enzyme activity can change the levels of endogenous cannabinoids thereby altering immune activity. Overall, activation of the CB2 receptors causes immunosuppression and can be beneficial during the hyperactivated immune state of sepsis, while suppression of the CB2 receptors may be beneficial during a hypoimmune septic state.
The endocannabinoid system modulates the immune response in experimental sepsis. Manipulating the endocannabinoid system may have potential therapeutic benefit in clinical sepsis where immune and inflammatory dysfunction can be detrimental. Multiple targets exist within the endocannabinoid system, e.g. the system can be targeted at the level of receptors by administration of synthetic compounds, similar to the endocannabinoids, which either increase or inhibit receptor activation to provide the desired therapeutic effect. Alternatively, the endogenous enzymes that degrade endocannabinoids or cannabinoid-like lipids can also be targeted in order to manipulate the levels of endocannabinoids. Proper identification of the septic stage is crucial to determine the adequate therapeutic response that will be most beneficial. Due to the biphasic nature of sepsis immunopathology, immune suppression through endocannabinoid modulation can help mitigate the hyper-immune response during the early septic state, while immune activation may be beneficial in later stages.” http://www.signavitae.com/2013/05/targeting-the-endocannabinoid-system-to-treat-sepsis/
Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids
“Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. These nanoparticle drones can be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy.
In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH) (air) versus traditional intravenous (“sea”) routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects.
As discussed earlier, nanoparticle drones are particularly attractive because they can also be loaded with drugs payload like cannabinoids. Cannabinoids, which are the bioactive components of Cannabis sativa and their derivatives, may exert palliative effects in cancer patients by preventing nausea, vomiting, and pain and by stimulating appetite .
Furthermore, studies indicate that cannabinoids can inhibit cancer cell growth in in vitro and in vivo. A Nature Reviews Cancer article and other recently published work highlight the potential of cannabinoids for treating cancer, working in synergy with radiotherapy and serving as radiosensitzers to enhance damage to lung tumor cells in particular. Consistent with this, our own experiments have confirmed the potential of cannabinoids in treating lung cancer, with results confirming that cannabinoids can enhance damage to cancer cells.
Overall, the use of nanoparticle drones administered via INH to enhance NRT, as highlighted in this article, may provide a good strategy for maximizing therapeutic efficacy in external beam NRT for lung cancer. Also there is growing evidence that cannabinoids can serve as radiosensitizers, enhance damage to tumor cells, slow tumor growth, and work synergistically with radiotherapy in cancer treatment.”
http://journal.frontiersin.org/article/10.3389/fonc.2017.00208/full
“Cannabis Science Announces Publication of Initial Research Results Using Nanoparticle Drones to Target Lung Cancer With Radiosensitizers and Cannabinoids in the Renowned Journal Frontiers in Oncology” https://ca.finance.yahoo.com/news/cannabis-science-announces-publication-initial-120522920.html
“Cannabis Science “Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids” Full Publication Released Today In Frontiers In Oncology” http://www.marketwired.com/press-release/cannabis-science-nanoparticle-drones-target-lung-cancer-with-radiosensitizers-cannabinoids-2234167.htm
The FAAH inhibitor URB597 suppresses hippocampal maximal dentate afterdischarges and restores seizure-induced impairment of short and long-term synaptic plasticity.
“Synthetic cannabinoids and phytocannabinoids have been shown to suppress seizures both in humans and experimental models of epilepsy.
However, they generally have a detrimental effect on memory and memory-related processes. Here we compared the effect of the inhibition of the endocannabinoid (eCB) degradation versus synthetic CB agonist on limbic seizures induced by maximal dentate activation (MDA) acute kindling. Moreover, we investigated the dentate gyrus (DG) granule cell reactivity and synaptic plasticity in naïve and in MDA-kindled anaesthetised rats.
We found that both the fatty acid amide hydrolase (FAAH) inhibitor URB597 and the synthetic cannabinoid agonist WIN55,212-2 displayed AM251-sensitive anti-seizure effects. WIN55,212-2, dose-dependently (0.5-2 mg/kg, i.p.) impaired short-term plasticity (STP) and long-term potentiation (LTP) at perforant path-DG synapses in naïve rats. Strikingly, URB597 (1 mg/kg, i.p.) was devoid of any deleterious effects in normal conditions, while it prevented seizure-induced alterations of both STP and LTP.
Our evidence indicates that boosting the eCB tone rather than general CB1 activation might represent a potential strategy for the development of a new class of drugs for treatment of both seizures and comorbid memory impairments associated with epilepsy.”
Challenges towards Revitalizing Hemp: A Multifaceted Crop.
“Hemp has been an important crop throughout human history for food, fiber, and medicine. Despite significant progress made by the international research community, the basic biology of hemp plants remains insufficiently understood. Clear objectives are needed to guide future research. As a semi-domesticated plant, hemp has many desirable traits that require improvement, including eliminating seed shattering, enhancing the quantity and quality of stem fiber, and increasing the accumulation of phytocannabinoids. Methods to manipulate the sex of hemp plants will also be important for optimizing yields of seed, fiber, and cannabinoids. Currently, research into trait improvement is hindered by the lack of molecular techniques adapted to hemp. Here we review how addressing these limitations will help advance our knowledge of plant biology and enable us to fully domesticate and maximize the agronomic potential of this promising crop.”
Cannabidiol, a novel inverse agonist for GPR12.
“GPR12 is a constitutively active, Gs protein-coupled receptor that currently has no confirmed endogenous ligands. GPR12 may be involved in physiological processes such as maintenance of oocyte meiotic arrest and brain development, as well as pathological conditions such as metastatic cancer. In this study, the potential effects of various classes of cannabinoids on GPR12 were tested using a cAMP accumulation assay.
Our data demonstrate that cannabidiol (CBD), a major non-psychoactive phytocannabinoid, acted as an inverse agonist to inhibit cAMP accumulation stimulated by the constitutively active GPR12. Thus, GPR12 is a novel molecular target for CBD.
CBD is a promising novel therapeutic agent for cancer, and GPR12 has been shown to alter viscoelasticity of metastatic cancer cells.
Since we have demonstrated that CBD is an inverse agonist for GPR12, this provides novel mechanism of action for CBD, and an initial chemical scaffold upon which highly potent and efficacious agents acting on GPR12 may be developed with the ultimate goal of blocking cancer metastasis.”
https://www.ncbi.nlm.nih.gov/pubmed/28888984
http://www.sciencedirect.com/science/article/pii/S0006291X1731759X
Medical Marijuana Helps Kids With Cerebral Palsy, Israeli Study Finds
“Medical marijuana significantly improved the condition of children suffering from cerebral palsy, a study by Wolfson Medical Center near Tel Aviv has found. According to the interim findings, treatment with cannabis oil reduced the disorder’s symptoms and improved the children’s motor skills. It also improved the kids’ sleep quality, bowel movements and general mood.
“The THC’s effect is especially relevant to motor function, whether it’s Parkinson’s disease or other motor symptoms,” says Bar-Lev Schleider. “But the THC is also responsible for the psycho-active effect, so we picked a variety that also has a lot of CBD, which moderates the euphoric effect.”
One group of children was treated with oil with a 1:6 ratio of THC to CBD, while for another group the ratio was 1:20.
“According to the interim findings both oils are effective,” says Bar-Lev Schleider.”
http://www.haaretz.com/israel-news/.premium-1.811010