Endocannabinoids: A Promising Impact for Traumatic Brain Injury.

 

Image result for Front Pharmacol

“The endogenous cannabinoid (endocannabinoid) system regulates a diverse array of physiological processes and unsurprisingly possesses considerable potential targets for the potential treatment of numerous disease states, including two receptors (i.e., CB1 and CB2 receptors) and enzymes regulating their endogenous ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonyl glycerol (2-AG).

Increases in brain levels of endocannabinoids to pathogenic events suggest this system plays a role in compensatory repair mechanisms.

Traumatic brain injury (TBI) pathology remains mostly refractory to currently available drugs, perhaps due to its heterogeneous nature in etiology, clinical presentation, and severity. Here, we review pre-clinical studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system to ameliorate TBI pathology.

Specifically, manipulations of endocannabinoid degradative enzymes (e.g., fatty acid amide hydrolase, monoacylglycerol lipase, and α/β-hydrolase domain-6), CB1and CB2 receptors, and their endogenous ligands have shown promise in modulating cellular and molecular hallmarks of TBI pathology such as; cell death, excitotoxicity, neuroinflammation, cerebrovascular breakdown, and cell structure and remodeling.

TBI-induced behavioral deficits, such as learning and memory, neurological motor impairments, post-traumatic convulsions or seizures, and anxiety also respond to manipulations of the endocannabinoid system.

As such, the endocannabinoid system possesses potential drugable receptor and enzyme targets for the treatment of diverse TBI pathology.

Yet, full characterization of TBI-induced changes in endocannabinoid ligands, enzymes, and receptor populations will be important to understand that role this system plays in TBI pathology.

Promising classes of compounds, such as the plant-derived phytocannabinoids, synthetic cannabinoids, and endocannabinoids, as well as their non-cannabinoid receptor targets, such as TRPV1 receptors, represent important areas of basic research and potential therapeutic interest to treat TBI.”

Cannabidiol: State of the art and new challenges for therapeutic applications.

Image result for Pharmacology & Therapeutics

“Over the past years, several lines of evidence support a therapeutic potential of Cannabis derivatives and in particular phytocannabinoids. Δ9-THC and cannabidiol (CBD) are the most abundant phytocannabinoids in Cannabis plants and therapeutic application for both compounds have been suggested. However, CBD is recently emerging as a therapeutic agent in numerous pathological conditions since devoid of the psychoactive side effects exhibited instead by Δ9-THC. In this review, we highlight the pharmacological activities of CBD, its cannabinoid receptor-dependent and -independent action, its biological effects focusing on immunomodulation, angiogenetic properties, and modulation of neuronal and cardiovascular function. Furthermore, the therapeutic potential of cannabidiol is also highlighted, in particular in nuerological diseases and cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/28232276

In vivo Evidence for Therapeutic Properties of Cannabidiol (CBD) for Alzheimer’s Disease.

Image result for Front Pharmacol.

“Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that is affecting an increasing number of people. It is characterized by the accumulation of amyloid-β and tau hyperphosphorylation as well as neuroinflammation and oxidative stress.

Current AD treatments do not stop or reverse the disease progression, highlighting the need for new, more effective therapeutics.

Cannabidiol (CBD) is a non-psychoactive phytocannabinoid that has demonstrated neuroprotective, anti-inflammatory and antioxidant properties in vitro. Thus, it is investigated as a potential multifunctional treatment option for AD.

Here, we summarize the current status quo of in vivo effects of CBD in established pharmacological and transgenic animal models for AD.

The studies demonstrate the ability of CBD to reduce reactive gliosis and the neuroinflammatory response as well as to promote neurogenesis.

Importantly, CBD also reverses and prevents the development of cognitive deficits in AD rodent models.

Interestingly, combination therapies of CBD and Δ9-tetrahydrocannabinol (THC), the main active ingredient of cannabis sativa, show that CBD can antagonize the psychoactive effects associated with THC and possibly mediate greater therapeutic benefits than either phytocannabinoid alone.

The studies provide “proof of principle” that CBD and possibly CBD-THC combinations are valid candidates for novel AD therapies.” https://www.ncbi.nlm.nih.gov/pubmed/28217094

“It is unlikely that any drug acting on a single pathway or target will mitigate the complex pathoetiological cascade leading to AD. Therefore, a multifunctional drug approach targeting a number of AD pathologies simultaneously will provide better, wider-ranging benefits than current therapeutic approaches. Importantly, the endocannabinoid system has recently gained attention in AD research as it is associated with regulating a variety of processes related to AD, including oxidative stress, glial cell activation and clearance of macromolecules. The phytocannabinoid cannabidiol (CBD) is a prime candidate for this new treatment strategy. CBD has been found in vitro to be neuroprotective, to prevent hippocampal and cortical neurodegeneration, to have anti-inflammatory and antioxidant properties, reduce tau hyperphosphorylation and to regulate microglial cell migration. Furthermore, CBD was shown to protect against Aβ mediated neurotoxicity and microglial-activated neurotoxicity, to reduce Aβ production by inducing APP ubiquination and to improve cell viability,. These properties suggest that CBD is perfectly placed to treat a number of pathologies typically found in AD. The studies provide “proof of principle” that CBD and possibly CBD-THC combinations are valid candidates for novel AD therapies.” http://journal.frontiersin.org/article/10.3389/fphar.2017.00020/full

Cannabis cultivation: Methodological issues for obtaining medical-grade product.

Image result for epilepsy & behavior

“As studies continue to reveal favorable findings for the use of cannabidiol in the management of childhood epilepsy syndromes and other disorders, best practices for the large-scale production of Cannabis are needed for timely product development and research purposes. The processes of two institutions with extensive experience in producing large-scale cannabidiol chemotype Cannabis crops-GW Pharmaceuticals and the University of Mississippi-are described, including breeding, indoor and outdoor growing, harvesting, and extraction methods. Such practices have yielded desirable outcomes in Cannabis breeding and production: GW Pharmaceuticals has a collection of chemotypes dominant in any one of eight cannabinoids, two of which-cannabidiol and cannabidivarin-are supporting epilepsy clinical trial research, whereas in addition to a germplasm bank of high-THC, high-CBD, and intermediate type cannabis varieties, the team at University of Mississippi has established an in vitro propagation protocol for cannabis with no detectable variations in morphologic, physiologic, biochemical, and genetic profiles as compared to the mother plants. Improvements in phytocannabinoid yields and growing efficiency are expected as research continues at these institutions.”

https://www.ncbi.nlm.nih.gov/pubmed/28202406

A cannabigerol-rich Cannabis sativa extract, devoid of [INCREMENT]9-tetrahydrocannabinol, elicits hyperphagia in rats.

Image result for Behav Pharmacol.

“Nonpsychoactive phytocannabinoids (pCBs) from Cannabis sativa may represent novel therapeutic options for cachexia because of their pleiotropic pharmacological activities, including appetite stimulation.

We have recently shown that purified cannabigerol (CBG) is a novel appetite stimulant in rats.

As standardized extracts from Cannabis chemotypes dominant in one pCB [botanical drug substances (BDSs)] often show greater efficacy and/or potency than purified pCBs, we investigated the effects of a CBG-rich BDS, devoid of psychoactive [INCREMENT]-tetrahydrocannabinol, on feeding behaviour.

CBG-BDS is a novel appetite stimulant, which may have greater potency than purified CBG, despite the absence of [INCREMENT]-tetrahydrocannabinol in the extract.”

https://www.ncbi.nlm.nih.gov/pubmed/28125508

Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation.

Image result for Br J Pharmacol.

“Microglial cells are important mediators of the immune response in the CNS. The phytocannabinoid, cannabidiol (CBD), has been shown to have central anti-inflammatory properties, and the purpose of the present study was to investigate the effects of CBD and other phytocannabinoids on microglial phagocytosis.

CONCLUSIONS AND IMPLICATIONS:

The TRPV-dependent phagocytosis-enhancing effect of CBD suggests that pharmacological modification of TRPV channel activity could be a rational approach to treating neuroinflammatory disorders involving changes in microglial function and that CBD is a potential starting point for future development of novel therapeutics acting on the TRPV receptor family.”

https://www.ncbi.nlm.nih.gov/pubmed/24641282

Molecular Targets of the Phytocannabinoids: A Complex Picture.

Image result for UNC Greensboro

“For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., have been used for their medicinal, as well as, their psychotropic effects.

These effects are associated with the phytocannabinoids which are oxygen containing C21 aromatic hydrocarbons found in Cannabis sativa L.

To date, over 120 phytocannabinoids have been isolated from Cannabis.

For many years, it was assumed that the beneficial effects of the phytocannabinoids were mediated by the cannabinoid receptors, CB1 and CB2. However, today we know that the picture is much more complex, with the same phytocannabinoid acting at multiple targets.

This contribution focuses on the molecular pharmacology of the phytocannabinoids, including Δ9-THC and CBD, from the prospective of the targets at which these important compounds act.”

Molecular Pharmacology of Phytocannabinoids.

Related image

“Cannabis sativa has been used for recreational, therapeutic and other uses for thousands of years.

The plant contains more than 120 C21 terpenophenolic constituents named phytocannabinoids. The Δ9-tetrahydrocannabinol type class of phytocannabinoids comprises the largest proportion of the phytocannabinoid content.

Δ9-tetrahydrocannabinol was first discovered in 1971. This led to the discovery of the endocannabinoid system in mammals, including the cannabinoid receptors CB1 and CB2.

Δ9-Tetrahydrocannabinol exerts its well-known psychotropic effects through the CB1 receptor but this effect of Δ9-tetrahydrocannabinol has limited the use of cannabis medicinally, despite the therapeutic benefits of this phytocannabinoid. This has driven research into other targets outside the endocannabinoid system and has also driven research into the other non-psychotropic phytocannabinoids present in cannabis.

This chapter presents an overview of the molecular pharmacology of the seven most thoroughly investigated phytocannabinoids, namely Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabivarin, cannabinol, cannabidiol, cannabidivarin, cannabigerol, and cannabichromene.

The targets of these phytocannabinoids are defined both within the endocannabinoid system and beyond.

The pharmacological effect of each individual phytocannabinoid is important in the overall therapeutic and recreational effect of cannabis and slight structural differences can elicit diverse and competing physiological effects.

The proportion of each phytocannabinoid can be influenced by various factors such as growing conditions and extraction methods. It is therefore important to investigate the pharmacology of these seven phytocannabinoids further, and characterise the large number of other phytocannabinoids in order to better understand their contributions to the therapeutic and recreational effects claimed for the whole cannabis plant and its extracts.”

https://www.ncbi.nlm.nih.gov/pubmed/28120231

Synthesis of Phytocannabinoids.

Image result for ETH Zürich

“The changing legal landscape including medicinal and recreational consumption of Cannabis sativa has led to renewed interest to study the chemistry and biology of cannabinoids. The chemistry in this chapter highlights approaches to cannabinoid total synthesis with an emphasis on the implementation of modern methods and tactics, which provide access to modified structures and enable investigations of the biology of the cannabinoid product family.”  https://www.ncbi.nlm.nih.gov/pubmed/28120230

Oral delta-9-tetrahydrocannabinol suppresses cannabis withdrawal symptoms.

Image result for Drug and Alcohol Dependence

“This study assessed whether oral administration of delta-9-tetrahydrocannbinol (THC) effectively suppressed cannabis withdrawal in an outpatient environment.

The primary aims were to establish the pharmacological specificity of the withdrawal syndrome and to obtain information relevant to determining the potential use of THC to assist in the treatment of cannabis dependence.

METHOD:

Eight adult, daily cannabis users who were not seeking treatment participated in a 40-day, within-subject ABACAD study. Participants administered daily doses of placebo, 30 mg (10 mg/tid), or 90 mg (30 mg/tid) oral THC during three, 5-day periods of abstinence from cannabis use separated by 7-9 periods of smoking cannabis as usual.

RESULTS:

Comparison of withdrawal symptoms across conditions indicated that (1) the lower dose of THC reduced withdrawal discomfort, and (2) the higher dose produced additional suppression in withdrawal symptoms such that symptom ratings did not differ from the smoking-as-usual conditions. Minimal adverse effects were associated with either active dose of THC.

CONCLUSIONS:

This demonstration of dose-responsivity replicates and extends prior findings of the pharmacological specificity of the cannabis withdrawal syndrome. The efficacy of these doses for suppressing cannabis withdrawal suggests oral THC might be used as an intervention to aid cannabis cessation attempts.”  https://www.ncbi.nlm.nih.gov/pubmed/16769180

“The endocannabinoid system as a target for the treatment of cannabis dependence” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647947/

“Cannabidiol for the treatment of cannabis withdrawal syndrome: a case report. CBD can be effective for the treatment of cannabis withdrawal syndrome.” https://www.ncbi.nlm.nih.gov/pubmed/23095052

“Oral delta-9-tetrahydrocannabinol suppresses cannabis withdrawal symptoms.” https://www.ncbi.nlm.nih.gov/pubmed/16769180