The effect of phytocannabinoids on airway hyper-responsiveness, airway inflammation, and cough.

“Cannabis has been demonstrated to have bronchodilator, anti-inflammatory, and antitussive activity in the airways…

We compared the effects of Δ(9)-tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, cannabidiolic acid, and tetrahydrocannabivarin on contractions of the guinea pig-isolated trachea and bronchoconstriction induced by nerve stimulation or methacholine in anesthetized guinea pigs following exposure to saline or the proinflammatory cytokine, tumor necrosis factor α (TNF-α)…

Only Δ(9)-tetrahydrocannabinol inhibited TNF-α-enhanced vagal-induced bronchoconstriction, neutrophil recruitment to the airways, and citric acid-induced cough responses…

The other cannabinoids did not influence cholinergic transmission, and only Δ(9)-THC demonstrated effects on airway hyper-responsiveness, anti-inflammatory activity, and antitussive activity in the airways.”

http://www.ncbi.nlm.nih.gov/pubmed/25655949

Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2.

“Here, we show a novel pharmacology for inhibition of human neutrophil migration by endocannabinoids, phytocannabinoids, and related compounds.

This study reveals that certain endogenous lipids, phytocannabinoids, and related ligands are potent inhibitors of human neutrophil migration, and it implicates a novel pharmacological target distinct from cannabinoid CB(1) and CB(2) receptors; this target is antagonized by the endogenous compound N-arachidonoyl l-serine.

Furthermore, our findings have implications for the potential pharmacological manipulation of elements of the endocannabinoid system for the treatment of various inflammatory conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/17965195

Endocannabinoids activate transient receptor potential vanilloid 1 receptors to reduce hyperdopaminergia-related hyperactivity: therapeutic implications.

“Knockout (KO) mice invalidated for the dopamine transporter (DAT) constitute a powerful animal model of neurobiological alterations associated with hyperdopaminergia relevant to schizophrenia and attention-deficit/hyperactivity disorder (ADHD).

CONCLUSIONS:

These data indicate a dysregulated striatal endocannabinoid neurotransmission associated with hyperdopaminergic state.

Restoring endocannabinoid homeostasis in active synapses might constitute an alternative therapeutic strategy for disorders associated with hyperdopaminergia.

In this process, TRPV1 receptors seem to play a key role and represent a novel promising pharmacological target.”

http://www.ncbi.nlm.nih.gov/pubmed/16199010

Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders.

“Cannabidiol (CBD) is the main non-psychotropic component of the glandular hairs of Cannabis sativa.

It displays a plethora of actions including anticonvulsive, sedative, hypnotic, antipsychotic, antiinflammatory and neuroprotective properties.

However, it is well established that CBD produces its biological effects without exerting significant intrinsic activity upon cannabinoid receptors.

For this reason, CBD lacks the unwanted psychotropic effects characteristic of marijuana derivatives, so representing one of the bioactive constituents of Cannabis sativa with the highest potential for therapeutic use.

The present review reports the pharmacological profile of CBD and summarizes results from preclinical and clinical studies utilizing CBD, alone or in combination with other phytocannabinoids, for the treatment of a number of CNS disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/18844286

Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception.

Logo of nihpa

“Cannabis has been used for thousands of years as a therapeutic agent for pain relief, as well as for recreational purposes.

Delta-9-Tetrahydrocannabinol (Δ9-THC)… produces antinociceptive effects in a wide range of preclinical assays of pain.

Considerable preclinical research has demonstrated the efficacy of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the primary psychoactive constituent of Cannabis sativa, in a wide variety of animal models of pain, but few studies have examined other phytocannabinoids.

Indeed, other plant-derived cannabinoids, including cannabidiol (CBD), cannabinol (CBN), and cannabichromene (CBC) elicit antinociceptive effects in some assays. In contrast, tetrahydrocannabivarin (THCV), another component of cannabis, antagonizes the pharmacological effects of Delta(9)-THC.

These results suggest that various constituents of this plant may interact in a complex manner to modulate pain.

The primary purpose of the present study was to assess the antinociceptive effects of these other prevalent phytocannabinoids in the acetic acid stretching test, a rodent visceral pain model…

Importantly, the antinociceptive effects of Delta(9)-THC and CBN occurred at lower doses than those necessary to produce locomotor suppression, suggesting motor dysfunction did not account for the decreases in acetic acid-induced abdominal stretching.

These data raise the intriguing possibility that other constituents of cannabis can be used to modify the pharmacological effects of Delta(9)-THC by either eliciting antinociceptive effects (i.e., CBN) or antagonizing (i.e., THCV) the actions of Delta(9)-THC.

The results obtained in the present study are consistent with the view that Δ9-THC is the major phytocannabinoid present in marijuana that produces antinociception in the acetic acid abdominal stretching test.

…these results suggest that there is potential to develop medications containing various concentrations of specific phytocannabinoids to optimize therapeutic effects (e.g., antinociception) and minimize psychomimetic effects.

In sum, the results of the present study further support the notion that Δ9-THC is the predominant constituent of marijuana that is responsible for eliciting antinociceptive effects and indicate that CB1 receptors play a predominant role in mediating these effects.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765124/

http://www.thctotalhealthcare.com/category/pain-2/

The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications.

An external file that holds a picture, illustration, etc.
Object name is gr1.jpg

“Oxidative stress and inflammation play critical roles in the development of diabetes and its complications.

Recent studies provided compelling evidence that the newly discovered lipid signaling system (ie, the endocannabinoid system) may significantly influence reactive oxygen species production, inflammation, and subsequent tissue injury, in addition to its well-known metabolic effects and functions.

The modulation of the activity of this system holds tremendous therapeutic potential in a wide range of diseases, ranging from cancer, pain, neurodegenerative, and cardiovascular diseases to obesity and metabolic syndrome, diabetes, and diabetic complications.

This review focuses on the role of the endocannabinoid system in primary diabetes and its effects on various diabetic complications, such as diabetic cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy, particularly highlighting the mechanisms beyond the metabolic consequences of the activation of the endocannabinoid system.

The therapeutic potential of targeting the endocannabinoid system and certain plant-derived cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabivarin, which are devoid of psychotropic effects and possess potent anti-inflammatory and/or antioxidant properties, in diabetes and diabetic complications is also discussed.

Although there is much controversy in the field of EC research, experimental evidence and clinical trials have clearly shown that ECS plays a key role in the development of primary diabetes and various diabetic complications. Although inhibition of CB1 receptors has proven to be effective in clinical trials of obesity and metabolic syndrome, this approach has ultimately failed because of increasing patient anxiety. However, recent preclinical studies clearly showed that peripherally restricted CB1 antagonists may represent a viable therapeutic strategy to avoid the previously mentioned adverse effects.

Importantly, CB1 inhibition, as discussed in this review, may also directly attenuate inflammatory responses and ROS and reactive nitrogen species generation in endothelial, immune, and other cell types, as well as in target tissues of diabetic complications, far beyond its known beneficial metabolic consequences. The main effects of CB1 receptor activation on the development of diabetes and diabetic complications are summarized in Figure 1. CB2 agonists may exert beneficial effects on diabetes and diabetic complications by attenuating inflammatory response and ensuing oxidative stress (Figure 2).

Natural cannabinoids, such as CBD and THCV, also have tremendous therapeutic potential.

CBD is a potent antioxidant and anti-inflammatory agent that does not appear to exert its beneficial effects through conventional CB receptors and is already approved for human use.

THCV and its derivatives, which may combine the beneficial effects of simultaneous CB1 inhibition and CB2 stimulation, are still under intense preclinical investigation. It will be interesting to see how newly developed, peripherally restricted CB1 receptor antagonists and/or CB2 receptor agonists and certain natural cannabinoids, such as CBD and THCV, will influence the clinical outcomes of diabetic patients.

We hope that some of these new approaches will be useful in clinical practice in the near future to aid patients with diabetes.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349875/

http://www.thctotalhealthcare.com/category/diabetes/

The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids.

“Multiple drug resistance (MDR) is one of the principal causes of chemotherapeutic treatment failure in malignant disease…

Cannabinoids are used therapeutically for the palliation of the adverse side effects associated with cancer chemotherapy. However, cannabinoids also inhibit both the activity and expression of the multidrug transporter…

Cannabinoids are novel Abcg2/ABCG2 inhibitors, reversing the Abcg2-mediated multidrug-resistant phenotype in vitro. This finding may have implications for the co-administration of cannabinoids with pharmaceuticals that are ABCG2 substrates…

Cannabis and cannabinoid preparations are used as therapeutic agents.

One of the many applications of cannabinoids is in the palliation of cancer chemotherapy-induced nausea, vomiting and anorexia. Indeed, the commercial preparations, Marinol and Cesamet, containing the synthetic Δ9-tetrahydrocannabinol (THC) analogue, dronabinol (or nabilone), are approved in some countries for this use.

Interestingly, in the future, cannabinoids might be co-administered with conventional cancer chemotherapies not only in a palliative capacity but also as primary anticancer medications. Accordingly, cannabinoids have demonstrated antiproliferative actions on cancer cells in vitro and in vivo…

To conclude, this is the first study to address the interaction of cannabinoids with the multidrug transporter ABCG2/Abcg2. The results presented here indicate that plant-derived cannabinoids are a novel class of ABCG2/Abcg2 inhibitors. Our results may have important implications for the use of cannabinoid compounds with therapeutic drugs that are substrates for ABCG2.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190019/

A sativex-like combination of phytocannabinoids as a disease-modifying therapy in a viral model of multiple sclerosis.

“Sativex® is an oromucosal spray, containing equivalent amounts of Δ9 -tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD)-botanical drug substance (BDS), and which has been approved for the treatment of spasticity and pain associated to multiple sclerosis (MS).

In this study, we investigated whether Sativex® may also serve as a disease-modifying agent in the Theiler’s murine encephalomyelitis virus induced demyelinating disease model of MS…

The data support the therapeutic potential of Sativex® to slow MS progression and its relevance in CNS repair.”

http://www.ncbi.nlm.nih.gov/pubmed/25857324

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/

 

Evaluation of Phytocannabinoids from High Potency Cannabis sativa using In Vitro Bioassays to Determine Structure-Activity Relationships for Cannabinoid Receptor 1 and Cannabinoid Receptor 2.

“Cannabis has been around for thousands of years and has been used recreationally, medicinally, and for fiber.

Over 500 compounds have been isolated from Cannabis sativa with approximately 105 being cannabinoids. Of those 105 compounds, Δ9-tetrahydrocannabinol has been determined as the primary constituent, which is also responsible for the psychoactivity associated with Cannabis.

Cannabinoid receptors belong to the large superfamily of G protein-coupled receptors.

Targeting the cannabinoid receptors has the potential to treat a variety of conditions such as pain, neurodegeneration, appetite, immune function, anxiety, cancer, and others.

Developing in vitro bioassays to determine binding and functional activity of compounds has the ability to lead researchers to develop a safe and effective drug that may target the cannabinoid receptors…”

http://www.ncbi.nlm.nih.gov/pubmed/25419092

THE EFFECT OF PHYTOCANNABINOIDS ON AIRWAY HYPERRESPONSIVENESS, AIRWAY INFLAMMATION AND COUGH.

“Cannabis has been demonstrated to have bronchodilator, anti-inflammatory and anti-tussive activity in the airways, but, information on the active cannabinoids, their receptors and the mechanisms for their effects is limited.

We compared the effects of Δ9-tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, cannabidiolic acid and tetrahydrocannabivarin…

The other cannabinoids did not influence cholinergic transmission and only Δ9-THC demonstrated effects on airway hyperresponsiveness, anti-inflammatory activity and antitussive activity in the airways.”

http://www.ncbi.nlm.nih.gov/pubmed/25655949

http://jpet.aspetjournals.org/content/early/2015/02/05/jpet.114.221283.long