Cannabidiol Displays Antiepileptiform and Antiseizure Properties In Vitro and In Vivo

“CBD is the major nonpsychoactive component of Cannabis sativa whose structure was first described by Mechoulam and Shvo (1963); CBD has recently attracted renewed interest for its therapeutic potential in a number of disease states. CBD has been proposed to possess anticonvulsive, neuroprotective, and anti-inflammatory properties in humans.”

 “Plant-derived cannabinoids (phytocannabinoids) are compounds with emerging therapeutic potential. Early studies suggested that cannabidiol (CBD) has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Here, we examine the antiepileptiform and antiseizure potential of CBD using in vitro electrophysiology and an in vivo animal seizure model…. These findings suggest that CBD acts, potentially in a CB1 receptor-independent manner, to inhibit epileptiform activity in vitro and seizure severity in vivo. Thus, we demonstrate the potential of CBD as a novel antiepileptic drug in the unmet clinical need associated with generalized seizures.”

“In conclusion, our data in separate in vitro models of epileptiform activity and, in particular, the beneficial reductions in seizure severity caused by CBD in an in vivo animal model of generalized seizures suggests that earlier, small-scale clinical trials for CBD in untreated epilepsy warrant urgent renewed investigation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819831/

Cannabidivarin is anticonvulsant in mouse and rat.

“Phytocannabinoids in Cannabis sativa have diverse pharmacological targets extending beyond cannabinoid receptors and several exert notable anticonvulsant effects. For the first time, we investigated the anticonvulsant profile of the phytocannabinoid cannabidivarin (CBDV) in vitro and in in vivo seizure models.”

 

“CONCLUSIONS AND IMPLICATIONS:

These results indicate that CDBV is an effective anticonvulsant across a broad range of seizure models, does not significantly affect normal motor function and therefore merits further investigation in chronic epilepsy models to justify human trials.”

http://www.ncbi.nlm.nih.gov/pubmed/22970845

Marijuana, endocannabinoids, and epilepsy: Potential and challenges for improved therapeutic intervention.

Abstract

  “Phytocannabinoids isolated from the cannabis plant have broad potential in medicine that has been well recognized for many centuries. It is presumed that these lipid soluble signaling molecules exert their effects in both the central and peripheral nervous system in large part through direct interaction with metabotropic cannabinoid receptors. These same receptors are also targeted by a variety of endogenous cannabinoids including 2-arachidonoyl glycerol and anandamide. Significant effort over the last decade has produced an enormous advance in our understanding of both the cellular and the synaptic physiology of endogenous lipid signaling systems. This increase in knowledge has left us better prepared to carefully evaluate the potential for both natural and synthetic cannabinoids in the treatment of a variety of neurological disorders. In the case of epilepsy, long standing interest in therapeutic approaches that target endogenous cannabinoid signaling systems are, for the most part, not well justified by available clinical data from human epileptics. Nevertheless, basic science experiments have clearly indicated a key role for endogenous cannabinoid signaling systems in moment to moment regulation of neuronal excitability. Further it has become clear that these systems can both alter and be altered by epileptiform activity in a wide range of in vitro and in vivo models of epilepsy. Collectively these observations suggest clear potential for effective therapeutic modulation of endogenous cannabinoid signaling systems in the treatment of human epilepsy, and in fact, further highlight key obstacles that would need to be addressed to reach that goal.”

http://www.ncbi.nlm.nih.gov/pubmed/22178327

Convulsions associated with the use of a synthetic cannabinoid product.

Abstract

“INTRODUCTION:

Clinical presentations following the use of various “spice” or synthetic cannabinoids have included agitation, anxiety, emesis, hallucinations, psychosis, tachycardia, and unresponsiveness. Convulsions were described in a one report although there was not laboratory confirmation for synthetic cannabinoids. In another published report laboratory confirmation for a synthetic cannabinoid was done in which the patient manifested activity that was interpreted as a possible convulsion.

CASE REPORT:

We describe a patient who had two witnessed generalized convulsions soon after smoking a “spice” product that we later confirmed to have four different synthetic cannabinoids.

DISCUSSION:

Convulsions have only rarely been associated with marijuana exposures. Recreational use of synthetic cannabinoids is a very recent phenomenon and there is a very limited, albeit burgeoning, literature detailing the associated complications including convulsions we have reported here. The absence of anticonvulsant phytocannabinoids in spice products could potentially be one of multiple unknown mechanisms contributing to convulsions.”

http://www.ncbi.nlm.nih.gov/pubmed/22160733

Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice

 “Cannabidiol is a Cannabis-derived non-psychotropic compound that exerts a plethora of pharmacological actions, including anti-inflammatory, neuroprotective and antitumour effects, with potential therapeutic interest. However, the actions of cannabidiol in the digestive tract are largely unexplored. In the present study, we investigated the effect of cannabidiol on intestinal motility in normal (control) mice and in mice with intestinal inflammation.”

“Cannabidiol selectively reduces croton oil-induced hypermotility in mice in vivo and this effect involves cannabinoid CB1 receptors and FAAH. In view of its low toxicity in humans, cannabidiol may represent a good candidate to normalize motility in patients with inflammatory bowel disease.”

“The plant Cannabis sativa contains more than 60 terpenophenolic compounds, named phytocannabinoids. The best-studied phytocannabinoid is Δ9-tetrahydrocannabinol, which binds specific G-protein-coupled receptors, named cannabinoid (CB1 and CB2) receptors. The well-known psychotropic effects of Δ9-tetrahydrocannabinol, which are largely mediated by activation of brain cannabinoid CB1 receptors, have always raised a number of clinical and ethical problems. Therefore, a valid therapeutic alternative may be the use of non-psychotropic phytocannabinoids, including cannabidiol (CBD). CBD, unlike Δ9-tetrahydrocannabinol, has very low affinity for both cannabinoid CB1 and CB2 receptors, although it has been proposed that CBD may modulate endocannabinoid function through its ability to inhibit the hydrolysis of anandamide and to act as a transient receptor potential vanilloid 1 agonist. CBD is a major component of Sativex, a preparation of cannabinoids, which has been approved by Health Canada for the treatment of neuropathic pain in multiple sclerosis.”

“The pharmacological profile of CBD has been recently reviewed. Briefly stated, CBD has been shown to exert (1) antioxidant, neuroprotective and antiproliferative actions in cultured cells and (2) anti-anxiety, hypnotic, anticonvulsant, neuroprotective, antinausea, anti-ischaemic, anticancer and notably anti-inflammatory effects in rodents in vivo. The anti-inflammatory effects of CBD have been demonstrated in both acute and chronic experimental models of inflammation, that is, paw oedema and arthritis.”

“In conclusion, we have shown that the marijuana component CBD normalize intestinal motility in an experimental model of ileitis. In vitro results showed antispasmodic actions of CBD on intestinal ileal segments. The inhibitory effect of CBD involves, at least in vivo, cannabinoid CB1 receptors and FAAH. In view of its safety records in humans (an average daily dose of about 700 mg/day for 6 weeks was found to be non-toxic, relative to placebo, in clinical trials; and because CBD reduced motility during inflammation and not in physiological conditions, CBD might be considered as a good candidate to be clinically evaluated for the treatment of hypermotility associated with inflammatory bowel disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2451037/

Medical use of cannabis. Cannabidiol: A new light for schizophrenia?

Abstract

“The medical properties of cannabis have been known for many centuries; its first documented use dates back to 2800 BC when it was described for its hallucinogenic and pain-relieving properties. In the first half of the twentieth century, a number of pharmaceutical companies marked cannabis for indications such as asthma and pain, but since then its use has sharply declined, mainly due to its unpredictable effects, but also for socio-political issues. Recently, great attention has been directed to the medical properties of phytocannabinoids present in the cannabis plant alongside the main constituent Δ(9) -Tetrahydrocannabinol (THC); these include cannabinoids such as cannabidiol (CBD), cannabigerol (CBG), and tetrahydrocannabivarin (THCV). Evidence suggests an association between cannabis and schizophrenia: schizophrenics show a higher use of marijuana as compared to the healthy population. Additionally, the use of marijuana can trigger psychotic episodes in schizophrenic patients, and this has been ascribed to THC. Given the need to reduce the side effects of marketed antipsychotics, and their weak efficacy on some schizophrenic symptoms, cannabinoids have been suggested as a possible alternative treatment for schizophrenia. CBD, a non-psychoactive constituent of the Cannabis sativa plant, has been receiving growing attention for its anti-psychotic-like properties. Evidence suggests that CBD can ameliorate positive and negative symptoms of schizophrenia. Behavioural and neurochemical models suggest that CBD has a pharmacological profile similar to that of atypical anti-psychotic drugs and a clinical trial reported that this cannabinoid is a well-tolerated alternative treatment for schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/23109356

Phytocannabinoids as novel therapeutic agents in CNS disorders.

Abstract

“The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body’s endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB(1) receptors by the major pCB, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ(9)-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ(9)tetrahydrocannabivarin (Δ(9)-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ(9)-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ(9)-THC pCB-based medicines.”

http://www.ncbi.nlm.nih.gov/pubmed/21924288

Plant, synthetic, and endogenous cannabinoids in medicine.

Abstract

“Although used for more than 4000 years for recreational and medicinal purposes, Cannabis and its best-known pharmacologically active constituents, the cannabinoids, became a protagonist in medical research only recently. This revival of interest is explained by the finding in the 1990s of the mechanism of action of the main psychotropic cannabinoid, Delta9-tetrahydrocannabinol (THC), which acts through specific membrane receptors, the cannabinoid receptors. The molecular characterization of these receptors allowed the development of synthetic molecules with cannabinoid and noncannabinoid structure and with higher selectivity, metabolic stability, and efficacy than THC, as well as the development of antagonists that have already found pharmaceutical application. The finding of endogenous agonists at these receptors, the endocannabinoids, opened new therapeutic possibilities through the modulation of the activity of cannabinoid receptors by targeting the biochemical mechanisms controlling endocannabinoid tissue levels.”

http://www.ncbi.nlm.nih.gov/pubmed/16409166

Phytocannabinoids and endocannabinoids.

“Progress in understanding the molecular mechanisms of cannabis action was made after discovery of cannabinoid receptors in the brain and the finding of endogenous metabolites with affinity to them. Activation of cannabinoid receptors on synaptic terminals results in regulation of ion channels, neurotransmitter release and synaptic plasticity

. Neuromodulation of synapses by the cannabinoids is proving to have a wide range of functional effects, making them potential targets as medical preparations in a variety of illnesses, including some mental disorders and neurodegenerative illnesses. Cannabis contains a large amount of substances with affinity for the cannabinoid receptors. The endocannabinoids are a family of lipid neurotransmitters that engage the same membrane receptors targeted by tetrahydrocannabinol and that mediate retrograde signal from postsynaptic neurons to presynaptic ones.

 Discovery of endogenous cannabinoids and studies of the physiological functions of the cannabinoid system in the brain and body are producing a number of important findings about the role of membrane lipids and fatty acids in nerve signal transduction. Plant, endogenous and synthetic cannabinoids are using in these studies. The role of lipid membranes in the cannabinoid system follows from the fact that the source and supply of endogenous cannabinoids are derived from arachidonic acid, an important membrane constituent

. The study of structure-activity relationships of molecules which influence the cannabinoid system in the brain and body is crucial in search of medical preparations with the therapeutic effects of the phytocannabinoids without the negative effects on cognitive function attributed to cannabis.”

http://www.ncbi.nlm.nih.gov/pubmed/19630737