Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway.

“Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes.

Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses.

Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology.

SIGNIFICANCE STATEMENT:

The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia.

However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications.

Specifically, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway.”

http://www.ncbi.nlm.nih.gov/pubmed/27147666

http://www.thctotalhealthcare.com/category/schizophrenia/

A systematic review of plant-derived natural compounds for anxiety disorders.

“Anxiety disorders are the most common mental illnesses affecting human beings. They range from panic to generalized anxiety disorders upsetting the well-being and psychosocial performance of patients. Several conventional anxiolytic drugs are being used which in turn result in several adverse effects. Therefore, studies to find suitable safe medicines from natural sources are being conducted by researchers.

The aim of the present study is to comprehensively review phytochemical compounds with well-established anxiolytic activities and their structure-activity relationships as well as neuropsychopharmacological aspects. Results showed that phytochemicals like; alkaloids, flavonoids, phenolic acids, lignans, cinnamates, terpenes and saponins possess anxiolytic effects in a wide range of animal models of anxiety.

The involved mechanisms include interaction with γ-aminobutyric acid (GABA)A receptors at benzodiazepine (BZD) and non-BZD sites with various affinity to different subunits, serotonergic 5-hydrodytryptamine (5-HT)1A and 5-HT2A/C receptors, noradrenergic and dopaminergic systems, glycine and glutamate receptors, and κ-opioid receptor as well as cannabinoid (CB)1 and CB2 receptors.

Phytochemicals also modulate the hypothalamo-pituitary-adrenal (HPA) axis, the levels of pro-inflammatory cytokines like interleukin (IL)-2, IL-6, IL-1β and tumor necrosis factor (TNF)-α, and improve brain derived neurotrophic factor (BDNF) levels. Transient receptor potential cation channel subfamily V (TRPV)3, nitric oxide cyclic guanosine monophosphate (NO-cGMP) pathway and monoamine oxidase enzymes are other targets of phytochemicals with anxiolytic activity.

Taking together, these phytochemicals may be considered as supplements to conventional anxiolytic therapies in order to improve efficacy and reduce adverse effects.

Further preclinical and clinical studies are still needed in order to recognize the structure-activity relationships, metabolism, absorption, and neuropsychopharmacological mechanisms of plant-derived natural agents.”

http://www.ncbi.nlm.nih.gov/pubmed/26845556