The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No “Strain,” No Gain

Image result for frontiers in plant science

“The current wave of excitement in Cannabis commerce has translated into a flurry of research on alternative sources, particularly yeasts, and complex systems for laboratory production have emerged, but these presuppose that single compounds are a desirable goal. Rather, the case for Cannabis synergy via the “entourage effect” is currently sufficiently strong as to suggest that one molecule is unlikely to match the therapeutic and even industrial potential of Cannabis itself as a phytochemical factory.

These studies and others provide a firm foundation for Cannabis synergy, and support for botanical drug development vs. that of single components, or production via fermentation methods in yeast or other micro-organisms.

This article has briefly outlined recently technological attempts to “reinvent the phytocannabinoid wheel.” Cogent arguments would support that it can be done, but should it be done? The data supporting the existence of Cannabis synergy and the astounding plasticity of the Cannabis genome suggests a reality that obviates the need for alternative hosts, or even genetic engineering of Cannabis sativa, thus proving that, “The plant does it better.””

Discovering the pharmacodynamics of conolidine and cannabidiol using a cultured neuronal network based workflow.

Scientific Reports“Determining the mechanism of action (MOA) of novel or naturally occurring compounds mostly relies on assays tailored for individual target proteins.

Conolidine and cannabidiol are plant-derivatives with known antinociceptive activity but unknown MOA.

We used principal component analysis (PCA) and multi-dimensional scaling (MDS) to compare network activity profiles of conolidine/cannabidiol to a series of well-studied compounds with known MOA.

Network activity profiles evoked by conolidine and cannabidiol closely matched that of ω-conotoxin CVIE, a potent and selective Cav2.2 calcium channel blocker with proposed antinociceptive action suggesting that they too would block this channel. To verify this, Cav2.2 channels were heterologously expressed, recorded with whole-cell patch clamp and conolidine/cannabidiol was applied.

Remarkably, conolidine and cannabidiol both inhibited Cav2.2, providing a glimpse into the MOA that could underlie their antinociceptive action.”

https://www.ncbi.nlm.nih.gov/pubmed/30644434

https://www.nature.com/articles/s41598-018-37138-w

Epidiolex (Cannabidiol): A New Hope for Patients With Dravet or Lennox-Gastaut Syndromes.

 SAGE Journals

“OBJECTIVE: To review the efficacy, safety, pharmacology and pharmacokinetics of pure, plant-derived cannabidiol (CBD; Epidiolex) in the treatment of Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS).

DATA SYNTHESIS: Pure, plant-based CBD is a pharmaceutical grade extract that exhibits clinically significant antiseizure properties, with a hypothesized multimodal mechanism of action. In the GWPCARE trial series, CBD displayed superior efficacy in reducing key seizure frequencies (convulsive seizures in DS; drop seizures in LGS) by 17% to 23% compared with placebo as adjunctive therapy to standard antiepileptic drugs in patients 2 years of age and older. Common adverse effects were somnolence, diarrhea, and elevated hepatic transaminases. Noteworthy drug-drug interactions included clobazam, valproates, and significant inducers/inhibitors of CYP2C19 and 3A4 enzymes.

Relevance to Patient Care and Clinical Practice: A discussion regarding CBD dosing, administration, adverse effects, monitoring parameters, and interactions is provided to guide clinicians. CBD offers patients with DS and LGS a new treatment option for refractory seizures.

CONCLUSION:

This is the first cannabis-derived medication with approval from the US Food and Drug Administration. This CBD formulation significantly reduces seizures as an adjunct to standard antiepileptic therapies in patients ≥2 years old with DS and LGS and is well tolerated.”

https://www.ncbi.nlm.nih.gov/pubmed/30616356

https://journals.sagepub.com/doi/abs/10.1177/1060028018822124?journalCode=aopd

“Why marijuana is headed for the mainstream. The credibility of cannabis as a source of a legitimate pharmaceutical ingredient in prescription medications took a major step forward in 2018 when the FDA approved Epidiolex (cannabidiol) for two types of severe seizures. Epidiolex was a stellar candidate for approval. It reduced convulsive seizures by about 40% and has a good safety profile.”  https://www.ncbi.nlm.nih.gov/pubmed/30620324

The effects of cannabinoids on the endocrine system.

“Cannabinoids are the derivatives of the cannabis plant, the most potent bioactive component of which is tetrahydrocannabinol (THC). The most commonly used drugs containing cannabinoids are marijuana, hashish, and hashish oil.

These compounds exert their effects via interaction with the cannabinoid receptors CB1 and CB2. Type 1 receptors (CB1) are localised mostly in the central nervous system and in the adipose tissue and many visceral organs, including most endocrine organs. Type 2 cannabinoid receptors (CB2) are positioned in the peripheral nervous system (peripheral nerve endings) and on the surface of the immune system cells.

Recently, more and more attention has been paid to the role that endogenous ligands play for these receptors, as well as to the role of the receptors themselves. So far, endogenous cannabinoids have been confirmed to participate in the regulation of food intake and energy homeostasis of the body, and have a significant impact on the endocrine system, including the activity of the pituitary gland, adrenal cortex, thyroid gland, pancreas, and gonads.

Interrelations between the endocannabinoid system and the activity of the endocrine system may be a therapeutic target for a number of drugs that have been proved effective in the treatment of infertility, obesity, diabetes, and even prevention of diseases associated with the cardiovascular system.”

A Review of Herbal Therapy in Multiple Sclerosis

Logo of advpharmbull

“Medicinal plants have opened a new horizon in curing neurodegenerative disorders such as Parkinson’s disease, AD and MS. literature data review indicated that herbal medicines could be effective in the treatment of MS disease and itsʼ related symptoms, by reducing the demyelination, improving remyelination and suppressing the inflammation in the CNS. On the basis of the above mentioned review, it can be concluded that the anti-inflammatory effect is the main reason of medicinal plants therapeutic effects in MS disease, through which medicinal plants ameliorate the severity of disease and reduce neuropathological changes. In addition to neuroprotective effect, medicinal plants have other beneficial effects for MS patients, such as sedation, improving sleep quality, anti-depressant effects, relief muscle stiffness and reducing bladder disturbance. The medicinal plants and their derivatives; Ginkgo biloba, Zingiber officinale, Curcuma longa, Hypericum perforatum, Valeriana officinalis, Vaccinium macrocarpon, Nigella sativa,Piper methysticum, Crocus sativus, Panax ginseng, Boswellia papyrifera, Vitis vinifera, Gastrodia elata, Camellia sinensis, Oenothera biennis, MS14 and Cannabis sativa have been informed to have several therapeutic effects in MS patients.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311642/

https://www.ncbi.nlm.nih.gov/pubmed/30607330

The Anti-Inflammatory Properties of Terpenoids from Cannabis.

View details for Cannabis and Cannabinoid Research cover image

“Cannabinoids are well known to have anti-inflammatory effects in mammalians; however, the Cannabis plant also contains other compounds such as terpenoids, whose biological effects have not yet been characterized. The aim of this study was to compare the anti-inflammatory properties of terpenoids with those of cannabidiol (CBD).

Materials and Methods: Essential oils prepared from three monoecious nonpsychoactive chemotypes of Cannabis were analyzed for their terpenoid content and subsequently studied pharmacologically for their anti-inflammatory properties in vitro and in vivo.

Results: In vitro, the three essential oils rich in terpenoids partly inhibited reactive oxygen intermediate and nitric oxide radical (NO) production in RAW 264.7 stimulated macrophages. The three terpenoid-rich oils exerted moderate anti-inflammatory activities in an in vivo anti-inflammatory model without affecting tumor necrosis factor alpha (TNFα) serum levels.

Conclusions: The different Cannabis chemotypes showed distinct compositions of terpenoids. The terpenoid-rich essential oils exert anti-inflammatory and antinociceptive activities in vitro and in vivo, which vary according to their composition. Their effects seem to act independent of TNFα. None of the essential oils was as effective as purified CBD. In contrast to CBD that exerts prolonged immunosuppression and might be used in chronic inflammation, the terpenoids showed only a transient immunosuppression and might thus be used to relieve acute inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/30596146

https://www.liebertpub.com/doi/10.1089/can.2018.0014

Medical Cannabis in the Skilled Nursing Facility: A Novel Approach to Improving Symptom Management and Quality of Life.

Journal of the American Medical Directors Association Home

“Throughout the millennia, the cannabis plant has been utilized as a recognized therapy for pain relief and symptom management.

Following the Prohibition-era stigmatization and criminalization of all forms of cannabis of the early 20th century, there has been a recent nationwide and worldwide resurgence in interest and use of the cannabinoid compounds extracted from the cannabis plant, that is, medical cannabis.

Although at the Federal level, cannabis remains a Schedule I substance, 31 states have already decriminalized possession and use of medical cannabis for specific diagnoses.

It is noteworthy that many of these indicated diagnoses are prevalent in the skilled nursing facility (SNF). This creates regulatory concerns as SNFs and other healthcare facilities must maintain compliance with Federal laws, while balancing the individual resident’s rights to utilize medical cannabis where indicated.

The authors developed an innovative program that affords their residents the ability to participate in a state-approved medical cannabis program while remaining compliant with Federal law. As medical cannabis use becomes more widespread and accepted, clinicians providing medical care in healthcare facilities will encounter residents who may benefit from and request this alternative therapy.

Studies examining older adults that are utilizing medical cannabis legally have demonstrated significant decreases in prescription medication use, most notably a reduction in opioid analgesic usage. As such, medical cannabis should be viewed as an additional option in the clinician’s toolbox of therapeutic interventions for symptom relief.”

https://www.ncbi.nlm.nih.gov/pubmed/30580820

https://www.jamda.com/article/S1525-8610(18)30662-5/fulltext

Cannabis for cancer – illusion or the tip of an iceberg: a review of the evidence for the use of Cannabis and synthetic cannabinoids in oncology.

Publication Cover

“A flowering plant of variegated ingredients and psychoactive qualities, Cannabis has long been used for medicinal and recreational purposes.

Regulatory approvals have been gained across a broad range of palliative and therapeutic indications, and in some cases, included in standard treatment guidelines.

Areas covered: The use of Cannabis and cannabinoid-based-medicines in oncology is summarized in this article. Cannabinoids were classified according to natural and synthetic subtypes and their mechanisms of action expounded. The variability of available products is discussed in the clinical context and data regarding chemotherapy-induced nausea and vomiting, cancer-related pain, anorexia, insomnia and anxiety are presented.

Moreover, immunological and antineoplastic effects in preclinical and clinical trials are addressed. Concepts such as synergism or opposition with conventional treatment modalities, sequence of administration and dosage, molecular cross-talk and malignancy-cannabinoid congruence, are explored. Finally, side-effects, limitations in trial design and legislation barriers are related.

Expert opinion: Sufficient evidence supports use of Cannabis for palliative indications in oncology, however, patients should be carefully selected, guided and followed. Promising research suggests potent antineoplastic activity, but more data must be accrued before conclusions can be drawn.”

https://www.ncbi.nlm.nih.gov/pubmed/30572744

https://www.tandfonline.com/doi/abs/10.1080/13543784.2019.1561859?journalCode=ieid20

Effects of cannabidiol in males and females in two different rat models of depression.

Physiology & Behavior

“The current study explores the therapeutic potential of Cannabidiol (CBD), a compound in the Cannabis plant, using both sexes of 2 “depressive-like” genetic models, Wistar Kyoto (WKY) and Flinders Sensitive Line (FSL) rats. Rats ingested CBD (30 mg/kg) orally. In the saccharin preference test, following a previous report of a pro-hedonic effect of CBD in male WKY, we now found similar results in female WKY. CBD also decreased immobility in the forced swim test in males (both strains) and in female WKY. These findings suggest a role for CBD in treating mental disorders with prominent symptoms of helplessness and anhedonia.”

https://www.ncbi.nlm.nih.gov/pubmed/30571957

https://www.sciencedirect.com/science/article/abs/pii/S0031938418307509?via%3Dihub